Systems Reference Library

Autocoder (on Disk)

File Number GENL-22
Form C24-3259-3

Program Specifications and Operating Procedures

IBM 1401, 1440, and 1460

Program Number 1401-AU-008

This reference publication contains the program speci-
fications and operating procedures for the Autocoder
(on Disk) Programming System.

The specifications describe the two programs, Sys-
tem Control and Autocoder Assembler, that make up
the Autocoder System. Logical files defined and used
by the System, control cards, and results of processing
operations are also included.

The operating procedures is divided into two sec-
tions. The first section describes assembling and exe-
cuting object programs, changing logical-file assign-
ments, maintaining an Autocoder library, and revising
an object program. The second section describes build-
ing and updating an Auiocoder System.

A summary of control card formats, phase descrip-
tions, and a listing of a sample program make up the
appendix of this publication.

For a list of other publications and abstracts, see the
IBM Bibliography for the associated data processing
system.

Preface

This publication contains the program specifications
and operating procedures for the Autocoder (on disk)
programming system for 1M 1401, 1440, and 1460. In
this publication, the term Autocoder System or System
refers to 1401/1440/1460 Autocoder (on Disk), program
number 1401-AU-008. The language specifications for
the Autocoder System are contained in the Systems
Reference Library publication Autocoder (on Disk)
Language Specifications for IBM 1401, 1440, and 1460,
Form C24-3258.

This publication is divided into two major sections:
program specifications and operating procedures. The
program specifications describe the Autocoder System.
Included in the section are such topics as a description
of the System Control Program (the controlling element
of the Autocoder System), a description of the proces-
sors in the Autocoder Assembler program, and a de-
tailed description of the results of System operations.
Although this section is directed primarily toward the
programmer, the machine operator should review the
section for an understanding of the System.

The second section, operating procedures, contains
such topics as preparing processor jobs, changing file
assignments for processor jobs, and running processor

Fourth Edition

jobs. The last part of the section outlines the proce-
dures to follow in building an Autocoder System. For
the convenience of both programmer and machine op-
erator, all control cards are summarized in Appendix I.

Although the second section is directed primarily to
the machine operator, it is recommended that the pro-
grammer review the content of the complete section.
The programmer should particularly note the parts of
the section dealing with preparing processor jobs and
changing file assignments.

Related Information

The following Systems Reference Library publications
contain additional information relating to the use of
the Autocoder System. It is recommended that these
publications be available to the user for reference.

Autocoder (on Disk) Language Specifications for
IBM 1401, 1440, and 1460, Form C24-3258.

Disk Utility Programs Specifications for IBM 1401,
1440, and 1460 (with 1301 and 1311), Form C24-1484.

Disk Utility Programs Operating Procedures for IBM
1401 and 1460 (with 1301 and 1311), Form C24-3105, or
Disk Utility Programs Operating Procedures for IBM
1440 (with 1301 and 1311), Form C24-3121.

This is a reprint of C24-3259-2 incorporating changes released in

the following Technical Newsletter:

Form No. Pages Affected Date

N21-5004 Contents, 7, 8, 8A, 11,
12, 15, 22, 23, 24, 25,
26, 27, 28, 29, 31, 43,

49, 50, 51, 52, 64

April 4, 1966

Requests for copies of IBM publications should be made to your IBM representative or to the IBM branch office

serving yowr locality.

A form is provided at the back of this publication for reader's comments.

If the form has been removed, comments

may be addressed to IBM Corporation, Programming Publications, Dept. 425, Rochester, Minn. 55901.

Program Specifications 5
Definition of Key Terms .. 5
Machine Requirements 6

The Autocoder System ... 6

Systems Control Programooceeeeeee. 6

Logical Files o 6
Residence File . 7
Operation Files . 7
Internal Files ... 7

CONtIOl CATAS vevreriiirerieiiiireeeeeeereerieesies et enaeesrae s e rsenaasesanes 7
BUN CAT oeiniiiieieii i iiteeeie et st esie e ere e seieesnesnins 7
ASGN Cards .. . 8
INIT Card 8
UPDAT Card ..ooovvvviiieriecvcrieciinieiveenieannes 8
NOTE Card ..coovviireieciiieciiciies e 8
PAUSE Card ... 8
HALT Card .occoovvevvniinennens 9

Autocoder Assembler Programcccovveviieennnenieccnn 9

PLEPIOCESSOT 1uvviviieiresreectiitentstsrbs sttt 9

AULOCOAET PrOCESSOT .vvivirvieeeeeirieniiiiiniaiiieesireee i 9

OULPUE PIOCESSOT vivviiiiririeniieiieneniiiiinriiisss st 9

EXeCUtION PrOCESSOT .oveiirvereririieessieirisinreresrasessireeseianesenaeees 10

Results of Processing Operations ..., 10

Documentation
Control Card Diagnostics ...coeerveerererveriinieiniiisie s
Source Statement DIiagnosticsveevemiierniiiiinc, 10
Label TaDIC weeeeeevirieciiiiteereeereereereenieeree s seessrcsrsesssereesreseneas 10
Cross-Reference LiStINg ..ovccvecceveriniiiinnienieeininissiens 11
Program Listingccceveiiininiinimien 12

AUL0COAETr TOXE woiiireiiievreeeee et 13

Object PrOZIamSs ...cccoevricerereenriiesniinnenissesssss e ssies 13
Card FOrmats .ooceieeeeeiennreenriiieresie e e 13
Coreload FOrmatooveeecveeiieenieeiceniee s 15

IMESSAEOS vuvvrrrenrrrenenreressanesteesainrternnsaesairesesasrssesenitsssanst s nnbees 15

Resequenced Source Deck ..o 15

Operating Procedures ... 16

JODS vt 16

Preparing Processor JODS i 16
Conventional Assembly 16
Load-and-Goc.ccrceruene .18
Delayed EXECULION .ivveveririenrinriiiirriieirsiisniere e cssssnnensene 19
Partial ProCeSSINE ..vovvvvrrceirrreeinireesrinieeitiisisinesnsesiesnesseans 20

Changing File Assignments 22
Preparing ASGN Cards 24
Using ASGN Cards 27

Batched Files coviiiiiiiiiiieieecieenenerceniceinne e .

Contents

Preparing Library Jobs ... 28
Capacity of a LIBRARY File . 29

Library Build .o.eccecceneveriniiiiiiieise 29
Library LiStING ..eeveveeeicrriiiiiminiiin e 30
Library CRange ...cccccccorereeiiienimiinieieeee e 30
Performing JOBS ..o 31
Preparing a Stack ..o 32
Running a Stack ..oceeveecerenenicinerc 32
Loaded Object Programs e 32
Halts and MESSAECS wevvervrieereririeiieenennrsssssssessesesiessisins 34
Using and Maintaining the Object Program 40
Methods of Execution ... 40
Load-and-Gocooueeee. ... 40
Delayed Execution ..., ... 40
Condensed-Loader Considerations e 41
IEM 1440 i o 41
BM 1401 or 1480e. .. 42
Revising the Object Program 42
Condensed-Loader Format 42
Self-Loading Format ... 42

Building, Updating, and Copying an

Autocoder SYSEem ..o 43

Autocoder-System Deck Description and Preparation
Marking Program

Write File-Protected Addressesoooviiiinirenininnininnns
System Control Card Build ..o
Card Boot ..ooevevcneniiinvieinen . 45
Autocoder Update .. . 45
Sample Program 45
Building an Autocoder System ..o . 45
Whrite File-Protected Addresses 46
System Control Card Build 47
Autocoder Updateoeeeeriomirmiiirisnessieinesssesnns 48
Sample PIOZIAI .coovirimeiriereiisiirisisnserssisissssiss s snssssnes 48
Updating an Autocoder System ... 49
Copying on Autocoder System ... 49
Appendix |—Control Card Formats ... 50
Appendix li—Phase Descriptions ... 53
Appendix lll—=Sample Program ... 59
INAEX it 64

The Autocoder Assembler Program is one part of a lan-
guage processing system that is under control of the
System Control Program. (A second language proces-
sor, coBoL, is also controlled by the System Control
Program.)

The Autocoder System translates source program
statements written in the Autocoder language into ma-
chine-language instructions. In addition to this trans-
lating function, the Autocoder System provides these
additional features:

Autocoder Library Compression. The statements that
make up the library routines are compressed and
stored as variable length records. This Autocoder
capability ensures the efficient use of disk storage.

Relocating the Autocoder Library. The user is pro-
vided with expansion capabilities of the Autocoder
library previously not possible with an Autocoder
processor. Further, should the user wish, he can relo-
cate the Autocoder library to an area of his choice in
disk storage.

Building Multiple Autocoder Libraries. In addition to
being able to relocate the Autocoder library, the user
can also build more than one Autocoder library.
Small libraries that contain selected routines appro-
priate to particular types of job processing signifi-
cantly reduce library-change time.

Changing Input/Output Devices. The Autocoder Sys-
tem provides the user with the option of changing
the form of input to and output from specific jobs.
So that the Autocoder System can operate at a ma-
chine-independent level, a set of logical files that are
used for input/output operations has been defined.
Although these logical files are assumed by the Sys-
tem Control Program to be assigned to a defined set
of input/output devices, the user can change these
assumptions according to his particular needs.

Stacking of Jobs. Under control of the System Control
Program, it is possible to process a series of jobs with-
out regard to the type of processing that is being per-
formed. For example, it is possible to assemble
source program number one, partially assemble
source program number two, and execute object pro-
gram number three, all in one stack.

Building an Object-Program Library in Disk Storage.
By using one of the logical files (coreLoAD) defined
by the Autocoder System, it is possible to build an
object-program library in disk storage. Because the
upper and lower limits of each object program stored

Program Specifications

in this area in disk storage are supplied to the user
by the Autocoder System, the user has immediate ac-
cess to any one of the stored object programs. Using
an object-program library substantially reduces pro-
gram load time (as opposed to loading from cards)
and eliminates excessive handling of punched-card
object decks.

Executing Punched-Card Object Programs. If a pro-
gram is infrequently used, the user may wish to
maintain a punched-card object program, thus sav-
ing disk storage for other purposes. When this is the
case, the user has two options for executing this ob-
ject program. It can be executed either under con-
trol of the Autocoder System (as a job in a stack of
jobs), or it can be executed completely independent
of the System.

Definition of Key Terms

To clarify the meaning of special terms used in this
publication, the following definitions are given. Stand-
ard terms are defined in Glossary for Information Proc-
essing, Form C20-8089.

Assembler. The program that translates Autocoder
symbolic statements into actual machine language.
This process is called an assembly.

Autocoder Text. A series of 100-character records con-
taining the source-program statement, or a generated
statement, and assembly information.

Batched Files. Logical files whose contents represent
one or more sequential sets of input to or output
from the Autocoder System.

Bootback. A routine located in upper core storage dur-
ing execution that provides linkage between the
user’s object program and the System Control Pro-
gram. This linkage is required when executing an ob-
ject program in a stack of jobs.

Card Boot. A card deck, supplied as part of the Auto-
coder System program deck, that is used to start all
System operations.

Job. An operation or series of operations to be per-
formed by the Autocoder System.

Logical Files. Input/output devices and/or areas used
by the Autocoder System.

Object-time. A term describing those elements or proc-
esses related to the execution of a machine-language
object program.

Operation. A basic unit of work to be performed by one
of the components of the System.

Stack. A set of one or more jobs to be processed during
the same machine run.

System. The set of programs made up of the elements
required for assembling and/or executing user-pro-
grams.

[1 Brackets contain an option that may be chosen.
{ } Braces contain options, one of which must be
chosen.

Machine Requirements

The Autocoder System requires the following minimum
machine configurations.

An BM 1401 system with:
4,000 positions of core storage
High-Low-Equal Compare Feature
One 18M 1311 Disk Storage Drive
One 18M 1402 Card Read-Punch
One 1BM 1403 Printer.

An 18M 1440 system with:
4,000 positions of core storage
One 1M 1301 Disk Storage or
one 1M 1311 Disk Storage Drive
One 18Mm 1442 Card Reader
One 18M 1443 Printer.

An 1BM 1460 system with:
8,000 positions of core storage
One 18M 1301 Disk Storage or
one M 1311 Disk Storage Drive
One 1BM 1402 Card Read-Punch
One 1M 1403 Printer.

The Autocoder System can use the following devices
and features if available:

1BM 1404 Printer

1M 1444 Card Punch

Console Printer

8,000, 12,000, or 16,000 positions of core storage

Print Storage feature

Direct Seek feature (for a library change only).

The Autocoder System

The Autocoder System built by the user contains the
System Control Program and the Autocoder Assembler
Program.

System Control Program. The System Control Program
is the controlling element of the System. Its main
function is to analyze control-card information, and
transfer control to the appropriate portion of the
system.

6 Autocoder (Disk) Program Specifications

Autocoder Assembler Program. The Autocoder Assem-
bler Program translates source programs, written in
the Autocoder language, into machine-language ob-
ject programs. The object programs can subsequently
be executed by the Autocoder System.

System Control Program

All system operations are initiated by a deck of cards
supplied by 18m. This deck, called the Card Boot, reads
in the first portion of the System Control Program from
disk storage. Ultimately, the entire resident portion of
the System Control Program is read into lower core
storage.

All control-type functions for the System are accom-
plished by the System Control Program. These func-
tions include:

Assigning Input/Output Devices. Input/output opera-
tions are coordinated with user-specified input/out-
put devices.

Updating the System. The System Control Program up-
dates the system to the latest modification level or
version.

Selecting Appropriate Processor Runs. Through control
cards supplied by the user, the System Control Pro-
gram determines the operations necessary for the
completion of a job. For example, if a source pro-
gram is coded in the Autocoder language, and the
end result of processing is to be a machine-language
object program, processing must be performed by
the Autocoder processor and the Output processor.
The control card says in effect that the source pro-
gram is coded in Autocoder and that processing is to
run through the Output processor. The System Con-
trol Program reads the control card and calls in the
Autocoder processor. Processing takes place, and at
the completion, control reverts to the System Control
Program. The System Control Program then calls in
the Output processor. Processing takes place, and at
the completion, control again reverts to the System
Control Program. Because the Output processor was
the last processor to be selected, the System Control
Program reads the control card for the next job.

The remainder of this section describes the following

aspects of the System Control Program:
Logical Files
Control Cards.

Logical Files

A set of logical files, defined by the Autocoder System,
is used for input/output operations. Each file has a
specific function and is assigned by the System Con-
trol Program to a particular device. The user can alter

the file-assignments by using AsoN (assign) control
cards. (See Changing File Assignments.)

The logical files may be thought of as falling into one
of four general categories. These categories are:

Residence File

Operation Files

External Files

Internal Files.
The functions of the logical files and the devices to
which they can be assigned follow.

Residence File

SYSTEM File. The system file contains the System
Control Program and the Autocoder Assembler Pro-
gram. It is assigned to a fixed area in a 1311 or 1301
disk unit.

Operation Files

CONTROL File. The conTroL file contains cards or
card images that send control information to the Sys-
tem Control Program. It can be assigned to the card
reader or the console printer.

MESSAGE File. The MessacE file contains information
of primary interest to the machine operator. These
messages are usually diagnostics relating to the oper-
ating procedures and/or instructions to the machine
operator. It can be assigned to the printer or the con-
sole printer.

External Files

LIST File. The vist file, generally associated with high-
volume printed listings, contains information di-
rected primarily to the source programmer. It can be
assigned to the printer, or to disk storage, or it can be
omitted. If the vist file is assigned to a disk unit, the
information is stored two sectors per printed line in
the move mode.

INPUT File. The ivpur file contains source information
to the processors. It can be assigned to the card
reader or to any available area in disk storage. If the
file is assigned to a disk unit, the card images must
be stored one card per sector in the move mode.

OUTPUT File. The ourpur file contains the results of
the operation or series of operations specified in the
ruN card. It can be assigned to the card punch, or to
disk storage, or it can be omitted. If the file is as-
signed to a disk unit, any card images will be stored
one per sector in the move mode.

LIBRARY File. The LBRrARY file is a disk-storage file
that supports the Autocoder macro facility. This file

contains the library table and library routines, such
as IOCS. It is maintained by the Autocoder Librarian
and used by the Autocoder Macro Generator. The
LIBRARY file can be assigned to any available area in
disk storage.

CORELOAD File. The coreLoab file is a disk-storage
file used by the Output and Execution processors of
the Autocoder Assembler Program. The file contains
an object program in the load mode. The CORELOAD
file is developed by the Output processor and is used
by the Execution processor.

Note. Only the external files INPUT, OUTPUT, CORELOAD, and
st can be batched. Batching will be performed when
a series of jobs is processed without intermediate file
assignments to these external files. When batch processing
is performed, input to and output from the processors is
stored sequentially within the files.

Internal Files

WORKI File. The worka file contains the intermediate
results from the Autocoder processor. It can be as-
signed to any available area in disk storage.

WORK?2 File. The work?2 file is used by the Autocoder
processor. It contains information for the cross-
reference listing and can be assigned to any avail-
able area in disk storage.

WORKS3 File. The work3 file is used by the Macro
Generator, the Autocoder processor, and the Output
processor. It can be assigned to any available area in
disk storage.

Control Cards

The System Control Program recognizes seven types of
control cards. They are:

RUN

ASGN

INIT

UPDAT

NOTE

PAUSE

HALT

Each type is punched in the Autocoder format. Appen-
dix I contains a summary of all specific control cards
that the System Control Program recognizes. Included
in Appendix L is a detailed description of the manner of
punching each specific control card and valid entries
for each of the general formats as discussed in the fol-
lowing sections.

RUN Card

The ruN card indicates the portion(s) of the Autocoder
Assembler Program that are to be selected by the Sys-

7

tem Control Program. A ruN card is required for cach
job to be performed. The general format of the run
card is:

AUTOCODER
VR o | runo fourror,
EXECUTION ’

If the optional part of the run card is omitted (THRU
OUTPUT OF THRU EXECUTION), the System Control Pro-
gram assumes that only the named processor is to be
selected. The THRU option enables the System Control
Program to call a series of processors automatically.
Valid entries for the rRun card are:

AUTOCODER RUN

AUTOCODER RUN THRU OUTPUT

AUTOCODER RUN THRU EXECUTION

OUTPUT RUN

OUTPUT RUN THRU EXECUTION

EXECUTION RUN
See Preparing Jobs for the specific Run card format re-
quired for each job.

ASGN Cards

An AseN card indicates to the System Control Program
that a logical file is to be assigned to a specific input/
output device. An aseN card is used when the user
wants a logical file assigned to an input/output device
or area other than the assumed assignment of the Sys-
tem Control Program, or when the user wants to
change an assignment that he has previously made.
The general format for an ascn card is:

file-name ASGN { g’ﬁiﬁ; }

The file-name is the specific logical file; device is the
input/output unit to which the logical file is to be as-
signed. Two examples for using an asoN card follow.
The logical file, INPUT, is to be changed from the as-
sumed device assignment (ReapER 1) of the System
Control Program to an area in disk storage. This area is
to be on 1311 unit 3, beginning at address 000600 and
extending to (not through) 000900. Note that the Enp
address to be punched is one more than the area actu-
ally used by the wrur file. The asen card for this ex-
ample is punched:
INPUT ASGN 1311 wuniT 3, starT 000600, ExD 000900
The second example illustrates the omission of a
logical file. (This option is valid only in specific cases.)
If the ourpur file is to be omitted, the ason card is
punched:
OUTPUT

ASGN OMIT

8 Autocoder (Disk) Program Specifications

The user must leave blanks between items in the
operand ficld where indicated in the specific formats.
For example, if the operand is READER 2, there must be
a blank between rEaDER and 2.

During a single stack of jobs, an assignment made by
the user for a single logical file remains in effect until
a HALT card, an INIT card, or another ascn card is
sensed for that particular file. For example, an ascn
card that specifies the vpur file to be assigned to
READERZ causes the assumed assignment, READER] to
be altered. The System Control Program will select
READER 2 during a single stack until an 1T card or
another ason card for the vvur file is encountered.

INIT Card

The T card indicates to the System Control Program
that all assumed logical file assignments are to become
effective. The general format of the it card is:

INIT any message

An N1t card can occasionally be used as a con-
venient substitute for an asen card. For example, as-
sume that the ivpuT file is assigned to disk for a par-
ticular job in a stack. If the next job is to be read in
from rEaDpER1, the vpur file assignment must be
changed from disk to rReaperl. For this purpose, an
i1t card may be used instead of an asen card because
READER] is the assumed assignment for the mput file,

UPDAT Card

The urpaTt card is included in a package supplied by
M for the purpose of updating the user’s Autocoder
System. It is prepunched in the following format:

ALL
DELETE

processor-name
UPDAT phase-name,< HEADER
{ SYSTEM } INSERT

PATCH

This card (excluding peLETE) will be followed by the
appropriate data cards.

NOTE Card

The NoTE card contains messages and/or instructions
from the programmer to the machine operator. Process-
ing is not interrupted when the System Control Pro-
gram senses this control card. The contents of the NOTE
card are printed on the MEssace file. The general for-
mat of the NoTE card is:

NOTE any message and/or instruction

A NoTE card could be used when the programmer
wants to direct that the output from a series of conven-

tional assemblies be placed on the coreLoAD file located
on disk drive 2. At the completion of processing the
series of jobs, a NoTE card could be used to tell the ma-
chine operator to remove the disk pack from drive 2.
The message would be:

NOTE REMOVE DISK PACK FROM DISK DRIVE 2

PAUSE Card

The raust card contains messages and/or instructions
from the programmer to the machine operator. When
the pausk card is sensed, the System Control Program

8A

temporarily halts the system. The contents of the PAUSE
card are printed on the MEssAGE file. Processing is re-
sumed by pressing the start key. The general format
for the rause card is:

PAUSE any message and/or instruction

One application of the use of a PausE card might be
in the case where the ivpur file for a job is located on
disk unit 3. The programmer could inform the machine
operator of this fact by using a pause card, telling him
to ready the drive. The message would be:

PAUSE READY TIIE PACK ON DISK DRIVE 3

HALT Card

The mavt card indicates to the System Control Program
that processing has been completed. It is the last card
of a stack. The contents of the marLt card arc printed
on the messack file. The general format for the mavrt
card is:

HALT any message and/or identification

Avutocoder Assembler Program

The Autocoder Assembler Program is made up of the
following sections:

Preprocessor

Autocoder Processor

Output Processor

Execution Processor.

Preprocessor

The Preprocessor consists of four portions, each of
which has a specific function:

Option Control. The Option Control analyzes control
card information and determines the operation(s) to
be performed. It then transfers control to the Libra-
rian, Update, or Macro Generator.

Librarian. The Librarian maintains the Autocoder li-
brary by inserting, deleting, and/or modifying the
library routines according to the user’s specifications.
Whenever the contents of the library are changed,
the Librarian updates the library table which is the
directory of library routines.

Update. The Update portion performs the function of
updating all portions of the Preprocessor.

Macro Generator. The Macro Generator performs pre-
assembly operations. It analyzes the Autocoder

source program to determine if it includes any macro
instructions. For each macro named in the source
program, the Macro Generator cxtracts the associ-
ated routine from the library, tailors the routine if
parameters are supplied in the macro instruction,
and generates a routine in the Autocoder format.

Two of the three Preprocessor portions (Librarian
and Update) that are called by the Option Control
complete the job requested by the user. The results of
the Librarian operations can be an updated library, a
listing of the library table, and/or a listing of routines.
An Update operation causes the Preprocessor to be up-
dated to the latest version or modification level of the
Autocoder System, At the successful completion of
each of these operations, control returns to the System
Control Program.

The Macro Generator performs only the first step in
a program assembly. The result of the Macro Generator
operation is an Autocoder source program that contains
tailored library statements. The next step, translating
source statements into machine language, is performed
by the Autocoder processor.

Avutocoder Processor

The Autocoder processor diagnoses the source state-
ments and converts the symbolic references in the
source statements to actual machine codes and ad-
dresses. The processor arranges the results of its opera-
tions to produce Autocoder text.

Autocoder text is a series of 100-character records.
Each record contains a source-program statement, or a
generated statement, and assembly information such as
the machine-language instruction, the length and ad-
dress of the instruction, and diagnostic flag symbols.

The results of Autocoder processing and the opera-
tions required to produce the results are:

Operation Result

Diagnose source
statements

Diagnostic messages and flag symbols

Convert symbolic
to actual

Label table and flag symbols

Arrange results Autocoder text (100-character records)

of assembly

At the completion of Autocoder processing, the text is
ready for the Output processor, which develops various
forms of output.

Output Processor

The Output processor rearranges the Autocoder text
according to the user’s specifications.

The results of Output processing and the rearrange-
ment required to produce the results are:

Result Rearrangement

The text is edited. Blanks are inserted be-
tween items of information.” Headings to
identify the items are incorporated in the
listing. A sequence number is assigned to
each statement on the listing.

Program listing

Source statements are extracted from the
text, and sequence numbers are substi-
tuted for page and line numbers.

Resequenced
source deck

Object program
(card format)

Machine-language instructions are ex-
tracted from the text, and the necessary
loading instructions are incorporated.

Object program
(coreload format)

Machine-language instructions are ex-
tracted from the text and transferred to
disk storage.

Object programs, in either format, are ready to be
executed. Execution of object programs in the coreload
format must be handled by the Execution processor.
Execution of object programs in the punched-card for-
mat can be handled by the Execution processor or exe-
cuted independent of the System.

Execution Processor

The Execution processor starts execution of the object
program and provides linkage with the System Control
Program so that the next job can be performed, with-
out operator intervention, immediately after execution
of the object program.

The Processor reads the bootback routine (linkage)
into upper core storage, calls the object program, and
transfers control to the object program.

Linkage to the bootback routine can be established
by using the syscL macro or by a manual branch to the
routine.

As described under Output Processor, the object pro-
gram can be in card format, which includes loading in-
structions, or in coreload format, which requires a disk
loader. The Execution processor supplies the disk
loader required by an object program in coreload
format.

Thus, the Execution processor permits the user to
include his object programs within a stack of jobs to be
performed.

Results of Processing Operations

The results of processing operations can be divided

into the following categories:

1. Documentation. Control card diagnostics, source
statement diagnostics, label tables, cross-reference
listings, and program listings fall into this category.

2. Intermediate results in the development of an object
program (Autocoder text).

3. Object programs in card or coreload format.

10 Autocoder (Disk) Program Specifications

4. Messages that specify the disk storage location of
any results that are to be used for future processing.

5. Resequenced source deck.

6. Execution of object programs. Execution of object
programs can be accomplished under control of the
System Control Program, or independent of the Sys-
tem. See Using and Maintaining the Object Program.

Documentation
Control Card Diagnostics

If any invalid characters are detected in the crL card
(control card for assembly), the crL card image and the
diagnostic message(s) are listed. The messages inform
the user that his crL card is invalid. The halt gives the
user the opportunity to decide if the assembly should
be continued.

The crL diagnostic messages and the format of the
crL card are shown in Figure 1.

Source Statement Diagnostics

The Autocoder processor phases, which analyze source
statements and develop diagnostic messages, are op-
tional. Their inclusion or exclusion is specified in the
source-program CTL card.

If any errors are detected in source-program state-
ments during the diagnostic phases, the invalid state-
ments (except columns 13-15 and 73-80) are listed. A
message appears at the right of each invalid statement.
If the statement contains more than one error, the diag-
nostic message refers to the first error detected. The
halt that occurs after the diagnostic phases have been
completed gives the user an opportunity to decide if
the assembly should be continued.

If the errors are not corrected, flag symbols may ap-
pear on the program listing and the object program,
when executed, may not produce the intended results
(sec Figure 2).

Label Table

The label table lists all labels and their equivalent ad-
dresses. Area-defining literals, followed by the # sign,
are also included. The labels and area-defining literals
are listed in alphabetical order according to the first
character. Indexing is indicated as shown in the sample
label table (Figure 3).

The maximum number of labels and area-defining
literals that can appear in the label table depends on
the number of disk-storage sectors assigned to the
WORKS file. See File Considerations under Changing
File Assignments.

Any errors detected by the Autocoder processor are
indicated by the following flag symbols:
A Name equated to an area-defining literal.

Diagnostic Messages

CTL Card Fomat

ence listing.

Card Image of Invalid CTL Card Column Indicates Contents
16-19 Mnemonic CTL
INVALID MACHINE SIZE SPECIFIED, 4K ASSUMED 21 Object-machine size 1 (4K); 2 (8K); 3 (12K); 4 (16K)
INVALID CHAR COL 22, BLANK ASSUMED 22 Modify address 1 (yes); not punched (no, if the object
machine is 4K; or yes, if the object machine
is 8K, 12K, or 16K)
INVALID CHAR COL 23, BLANK ASSUMED 23 Advanced programming 1 (yes); not punched (no)
or index and store-
address register feature .
INVALID CHAR COL 24, BLANK ASSUMED 24 Multiply—divide feature 1 (yes); not punched (no)
INVALID MACHINE SPECIFIED, PROCESSOR 25 Object machine 0 (1401); 4 (1440); 6 (1460)
MACHINE ASSUMED
INVALID CHAR COL 26, x ASSUMED 26 Punch device S (1442 or 1444); P (1402)
(x =P for 1401 and 1460; x = S for 1440)t
INVALID CHAR COL 27, x ASSUMED 27 Read device S (1442); P (1402)
(x =P for 1401 and 1460; x = S for 1440) t
INVALID CHAR COL 28, zc_ASSUMED 28 Printer device * S (1443); P (1403)
(§=P for 1401 and 1460; x=$ for 1440)+
INVALID CHAR COL 29, 1 ASSUMED 29 Disk device 1 (1311 or 1301); 2 (1405)
INVALID CHAR COL 30, BLANK ASSUMED 30 Source statement N (no); 1 or not punched (yes)
diagnostic
INVALID CHAR COL 31, BLANK ASSUMED 3t Label table or cross-refer-| L (Label Table);

N (Neither); not punched (cross-reference

coreload format)

listing
INVALID READ=IN LOCATION, 00001 ASSUMED 32-36 a. Object program in a. Shbbb (object program in
self-loading format self-Toading format)
b. Read-in area for a b. 5-digit starting address, or not punched
1440 object pro= (starting address of the 1440 read=in
gram in the con= area is 00001)
densed=loader Note: Leave blank for a 1401 or 1460 object
format . program in the condensed-loader
format .
INVALID LOADER LOCATION, 000xx ASSUMED 37-41 Loader location 5-digit starting address.
(xx = 81 for 1401 and 1460, xx = 75 for 1440) If column 42 contains a D, punch:
0370l for 4K 11701 for 12K
0770l for 8K 15701 for 16K
These columns are not checked if column.32
contains an §
INVALID CHAR COL 42, BLANK ASSUMED 42 Disk loader(for D (yes); not punched (no)

object programs in the

t The values of x depend on the object machine specified in column 25.
* Consider a 1403 Prinfer attached to a 1440 system as being the same as a 1443 Printer.

Figure 1. CTL Diagnostics and CTL Card Format

M Multiply defined. The same label appears in more
than one label field.

E Invalid operand in an EQu statement.

Cross-Reference Listing

The cross-reference listing lists all labels and area-
defining literals used in the program. The address as-
signed to the label or literal and the sequence numbers
of the statements in which the label or literal is used
are given. For a label, the first sequence number listed
is the sequence number of the statement that defines
the label; for an area-defining literal, the first sequence
number listed is the sequence number of the first state-
ment that uses the literal.

The maximum number of labels and area-defining
literals that can appear in the cross-reference listing
depends on the number of sectors assigned to the
WORKS file. The maximum number of references to
labels and area-defining literals depends on the num-
ber of sectors assigned to the WORK2 file. See File
Considerations under Changing File Assignments.

The labels and area-defining literals are listed in
alphabetical order. Each literal is followed by a #
sign in the tag column. If a label is undefined, it ap-
pears with all sequence numbers assigned to it and
with periods in the address column. A zone bit over
the tens position of the address indicates that the label
is indexed. The zone bit used is the same as that which
appears in the machine language address.

11

Diagnostic Meaning Processor Action
Message
OPERATION The operation field does not contain a valid mnemonic or a | 1. An eight-character no-operation instruction
machine-language operation code . (N xxx xxx x) is inserted,
2, Ifan operand or the d=character is not specified, the
assembler inserts zeros.
F FORMAT An operand is invalid: 1. [f the statement is a DA header, a subsequent DA, or
1. An operand confains one of the following special a DS, the operand is replaced with 1.
characters , # +-b . 2. For a DSA the count is 3. For a DCW or DC the count
2. Invalid literal, is: 1 for a blank constant; 50 for an alphameric
3. Literal used in an EQU, ORG, or LTORG statement. constant; 3 for an address constant; equal to the
4. Blank operand used in a declarative or EQU state- number of numeric characters in a numeric constant.
ment.
L FORMAT A symbolic operand exceeds six characters, or an actual 1. 1hree periods replace the operand.
address operand exceeds five characters.
X FORMAT An X-control field is invalid. 1. The invalid X-control field is processed.
D-MODIFIER A d-modifier is missing or is invalid for the operation 1. A blank is inserted if the d-modifier is missing.
specified. 2. The statement is assembled with the invalid d=modi-
fier.
ADJUSTMENT An indexing or adjustment factor is used incorrectly. 1. If double indexing is specified, the last index factor
is used.
2. If the adjustment factor is invalid, it is ignored.
LABEL ERR A'label is invalid: 1. Extra characters are deleted.
1. It exceeds six characters. 2, The label is processed with the special characters.
2. It begins with a numeric character, or it contains one If the label is used as an operand in another state-
of the following special characters , #4ab, ment it will be recognized as an erroneous operand.
3. It is missing in an EQU statement.
OPRND TYPE The A- or B-operand is invalid for the operation specified. | The statement is assembled with the invalid operand.
For example, %G2 is invalid in MLC NAME, %G2.
OPERANDS An operand is missing, or there are too many for the opera-| 1. [f an operand is missing in an 1/O instruction that
tion specified. requires eight characters, periods are inserted;
otherwise, the statement is assembled as specified.
2, Extra operands are dropped.

Figure 2. Source Statement Diagnostics

Any errors detected by the Autocoder processor are revising the program is necessary.

indicated by an A, M, or E in the tag column. The The following messages, if appropriate, appear at the
meanings of these symbols are given under Label end of a program listing:

Table. The cross-reference listing associated with the END OF LISTING—X ERRORS, where x is the number of
sample program (supplied with the Autocoder pro- program errors.

gram deck) is shown in Appendix III. OBJECT CORE EXCEEDED, which counts as a program

error.

Program Listing X Or NO SEQUENCE ERRORS, which does not count as a
The program listing documents the program and en- program error.

ables the programmer to see the results of Autocoder A description of the 120-character and 100-character

processing. The listing also assists the programmer if listings follows.

LABEL TABLE

AREA # 01082 AREAL # 01085 CHECK 01037 DELAY Cl062 END 01070
LABEL 01007 LABEL1 01023 LABEL2 M 01030 LABEL2 M 01041 RESULT 010226X1
susTgT 01022 TOTAL E cenee X1 00089

Figure 3. Label Table

12 Autocoder (Disk) Program Specifications

120-Character Listing

Program errors are indicated by flag symbols in the last
columns of the program listing. The thirteen flag sym-
bols and their meanings are:

Invalid number of operands

Invalid operation code

Invalid d-modifier

Invalid X-control field

Format error

Extra characters in a symbolic or actual address
operand

Invalid indexing or adjustment

Invalid symbolic indexing

Undefined operand

Reference to the label of an invalid Qu statement
Reference to a multiply defined label

Result of address adjustment is greater than 16,000
or less than zero

Source statement is out of sequence.

The format of the 120-character listing is:

OZEO=> CHEXZOow%

wn

Columns Contents

1-4 Sequence number assigned by the Output proc-
essor

5 Blank

6-10 Source program page and line number

11 Blank

12-18 Label or blank

19 Blank

20-24 Operation code manemonic

25 Blank

26-77 Operands and comments

78 Blank

79 Suffix character or blank

80 Blank

81-82 Count (number of characters in the assembled
instruction), or blank. Blank constants and area-
defining literals have no count.

83-84 Blank

85-89 Location of the assembled instruction

90-91 Blank

92-99 Assembled instruction

100 Blank

101-105 A-address (actual) or X-control field

106 Blank

107-111 B-address (actual)

112-113 Blank

114 Period

115 Label error flag

116 Operation error flag

117 A-operand flag

118 B-operand flag

119 d-modifier flag

120 Sequence flag

100-Character Listing

The format of the 100-character listing is the same as
the 120-character listing except that the suffix charac-
ter, the count, the location of the assembled instruction,
and the assembled instruction are shifted three posi-
tions to the left. The A- and B-addresses are omitted.
Column 100 contains a W flag symbol which is a warn-
ing that the statement contains an error.

Avutocoder Text

The Autocoder text is a series of 100-character records
that are developed by the Autocoder processor. Each
record contains a source-program Or generated state-
ment and assembly information such as the machine-
language instruction, the length and address of the in-
struction, and diagnostic flag symbols.

The Autocoder text can be used as a restart point for
Output processing.

Object Programs

Card Formats

Two object-program card formats, self-loading and
condensed-loader, are available. The condensed-loader
card deck (Figure 4) consists of object-program cards
which are preceded by clear cards, a bootstrap card,
and load cards. The loader instructions for 1440 nor-
mally require 132 positions of core storage; the loader
instructions for 1401 and 1460 require 125 positions.
(See Condensed Loader Considerations.)

The self-loading card deck {(Figure 5) consists of
cards that contain loading instructions, and object-
program instructions and/or data. Two clear-storage
cards and a bootstrap card precede the self-loading
cards.

A 1440 object program in the self-loading format re-
quires that the read-in area be 00001-00072 and that
positions 73-85 be reserved for the read-a-card and
branch instructions, which are moved into these posi-
tions by the bootstrap routine. A 1401 or 1460 object

Object Program

T

d Cards

g5

(Bootstrap Card

(Clear Card 2 —

7
Clear Card1
oader

Figure 4. Object Deck in the Condensed-Loader Format

Object Deck

13

Object Program
and
Loading Instructions

(Bootstrap Card
(Clear Card 2

Clear Card 1

Object Deck

Figure 5. Object Deck in the Self-Loading Format

program requires no additional positions outside the
read-in area.

An execute card in either a condensed-loader or self-
loading object deck interrupts the loading, so that a
portion of the object program that has already been
loaded is executed. If a source program EX or XFR state-
ment caused the execute card to be developed, the ob-
ject program must contain a branch instruction that
transfers control back to the loading instructions. If a
DA statement caused the execute card to be developed,
the execute card contains instructions that prepare the
defined area according to the specifications in the pa
header (clear the area, set word marks, create record
marks, create a group-mark word-mark). The execute
card also contains a branch back to the loading routine.

Note: Generally, on a 1442, an object deck in the condensed-
loader format can be loaded faster than a deck in the self-
loading format.

On a 1402, an object deck in the self-loading format can be
loaded faster than a deck in the condensed-loader format.

Condensed-Loader Format

The cards that precede the object program are called
the loader (six cards for 1401 or 1460, seven cards for
1440). The first two cards in the loader contain instruc-
tions to clear storage before the program is loaded.
Columns 79-80 contains C1 in card 1 and C2 in card 2.

The third card is the bootstrap card. This card sets
word marks for the instructions in the load cards and
supplies an instruction that reads the load cards into
the read-in area. The bootstrap card contains identifi-
cation in columns 73-80. For a 1440 program, the iden-
tification is BooTsTcp; for a 1401 or a 1460 program, it
is BooTLDO1,

The remaining cards in the loader are the load cards.
These cards contain the loading routine and the in-
structions that move the loading routine into the load-
ing instruction area.

14 Autocoder (Disk) Program Specifications

After the loading instruction area has been initial-
ized, control is transferred to the loader. The loader
moves the data and instructions in the object-program
deck into their proper locations in core storage.

The object program cards have the following format:

Columns Contents

1-3 The three-character machine address of the first
storage position to be loaded.

4-5 The number of characters to be loaded from the
card. Word-separator characters are not counted.

6-71 The instructions and/or constants to be loaded.
A word-separator character (0-5-8 punch) precedes
every character requiring a word mark in core
storage.

Each pair of word-separator characters is loaded
as a single word-separator character with no word
mark. An odd number of word-separator characters
(n) is loaded as n — 1 word-separator characters

with no word marks; the last word-separator char-
acter causes a word mark to be set in the position
that will contain the next character in the card.

72-75 The program-listing sequence number of the first

instruction or constant to be loaded.

76-80 Identification. The identification in columns 76-80

of the jos card appears in all cards in the con-
densed deck. Each new jos card in the source deck
causes the identification of the condensed deck to
be changed.

Self-Loading (1401 and 1460)

The first two cards in the self-loading object deck are
clear cards that clear storage before the object program
is loaded. These cards are identified by C1 and C2 in
columns 79-80.

The third card is a bootstrap card that contains in-
structions that set word marks in the read-in area be-
fore the object program is loaded. This card is identi-
fied by BooTsTRAP in columns 72-80.

The remainder of the cards contain assembled pro-
gram instructions and load instructions. There can be
as many as seven instructions or constants on each
card. The card format is as follows:

Columns Contents
1-39 The instruction and/or constants to be loaded into
core storage.
40-46 Instructions that load the instructions or constants
into core storage with a high-order word mark.
47-67 Three 7-character set-word-mark instructions (or

one clear-word-mark and two set-word-mark in-
structions for cards beginning with partial instruc-
tions or constants that do not require a high-order
word mark). These instructions set the word marks
that define the separate fields in the block of core
storage being loaded.

Columns Contents

68-71 1040. This is an instruction to read a card and
branch to location 040.

72-75 Program-listing sequence number of the first in-
struction or constant to be loaded.

76-80 Identification. The identification in columns 76-80

of the jop card appears in all cards in the self-
loading deck. Each new joB card in the source deck
causes the identification of the self-loading deck to
be changed.

Self-Loading (1440)

The first two cards clear core storage before the pro-
gram is loaded. These cards are identified by C1 and
C2 in columns 79-80.

A bootstrap card, identified by Mm%cl100lr in col-
umns 73-80, loads a group-mark word-mark, a read-a-
card instruction, and a branch instruction (B040) into
positions 72-84 of the read area. Position 85 must be
left blank or contain a wordmark.

The format of the remaining cards is the same as that
described for 1401 and 1460, except columns 68-71 con-
tain BO73. This instruction causes a branch to 073
which contains the bootstrap card read-a-card instruc-
tion.

Coreload Format

An object program in the coreload format is written in
disk storage. It contains the machine-language object-
program instructions. At execution time a disk loader,
supplied by the Execution processor, initiates the load-
ing of the object program.

The object program in coreload format is written in

the load mode. The structure of the program in disk
storage is:

L. A one-sector header record that has the following
format:

Positions Contains
1-7 A move instruction that transfers the address of the
first operating sector to the disk loader.
8-11 A branch to the disk loader.
12-17 The address of the first operating sector.
18-23 HEADER
24-28 The identification from the last yoB card in the
source program, or blank if no jos card was in-
cluded.
29-80 The operand from the last jos card in the source
program or blank if no jos card was included.
81-90 Unused

2. Full 90-character sectors. These sectors contain an
exact core-storage image of the object program.

3. Operating sectors. The first sectors contain instruc-
tions that load the full 90-character sectors into their
proper core-storage locations. The remaining sec-
tors contain instructions that fill in the instructions

and/or constants that could not be put into a full
90-character sector during the Output processor
operation,

4. An execution instruction that causes a branch to the
object program at object-time.

If the source program contains EX or XFR statements,

sections 2, 3, and 4 are repeated for each overlay.

Note: Certain restrictions must be considered when writing a
source program that is to be an object program in the core-load
format:

1. A group mark must not be the first character of a literal or
the first data character of a DCW statement.

2, Before returning control to the disk loader for loading a new
program or program overlay, any group-mark word-marks
within the section of core storage being overlaid should be
cleared.

3. Statements within a program or program overlay are not
always loaded into core storage in the same order they were
coded.

Messages

One of the following messages appears when the input
for or output from an operation is assigned to disk
storage.

INP
3OUT FILE { }SETN%RSTS} ON {igéi}
1] LST

AT ADDRESS nnnnnn.

2. CORELOAD OUTPUT COMPLETE ON {ig(l)}} UNIT n,

START nnnnnn, END nnnnnn.

The messages that reflect the location of results stored
in disk files should be recorded because the addresses
specify restart points for future processing.

Resequenced Source Deck

A resequenced source deck is the original source pro-
gram with the page and line numbers (columns 1-5)
replaced by sequence numbers assigned by the Output
processor. The numbers start with 0001 in columns 1-4.
Subsequent entries are increased by 000L. The format
of the resequenced deck is:

Columns Contents
1-4 Sequence number assigned by the Output processor
(0001-xxxx)
5 Blank
6-72 Columns 6-72 of the source card
73-75 Blank
76-80 Identification from the jos cards as encountered in

the source deck

15

Operating Procedures

Jobs

The Autocoder System performs three major opera-
tions,

1. Translates source programs.

2. Produces object programs.

3. Starts the execution of object programs.

Because these operations are performed by the three
processors of the System, the operations are called
processor jobs. In this respect, the Autocoder processor
translates source programs. The Output processor pro-
duces object programs. The Exccution processor starts
the execution of object programs.

Two other operations, maintaining the Autocoder li-
brary and updating the Autocoder System, are also
considered jobs. Maintaining the Autocoder library is
called a library job. Updating the Autocoder System
is called an update job. Update jobs are described in
Updating an Autocoder System.

Under control of the System Control Program, it is
possible to perform one or more jobs without operator
intervention. This process is called stack processing. A
stack is always made up of the Card Boot deck, a sys-
TEM ASGN card, the particular job(s) to be performed,
and a HALT card.

In performing a job, the following must be taken into
consideration.

1. The kind of input for the job.
2. The use of the logical files.
3. The machine-operator procedures to be followed.

The kinds of input for processor jobs and library jobs
are discussed in the following sections (Preparing Proc-
essing Jobs and Preparing Library Jobs).

The general use of logical files is discussed in Logi-
cal Files. In most cases, the user does not need to be
concerned about the logical files used for a particular
job because the Autocoder System defines the files and
assigns them to specific input/output devices. In the
description that follows of preparing individual proces-
sor jobs, any file asisgnment that the user must make is
explained.

The machine-operator procedures to be followed are
described in Performing Jobs.

Preparing Processor Jobs

The kind of output that is desired by the user is the de-
termining factor of which processor job is to be per-
formed. Figure 6 lists each processor job and the out-
put from the Autocoder System by the completion of

16 Autocoder (Disk) Operating Procedures

the job. In the figure, yEs means that the type of output
is always produced. opT means that the type of output
is produced only if the user specifies that it be. This is
done by supplying output option (opTN) cards in addi-
tion to the required control cards.

The remainder of this section describes each indi-
vidual processor job. They are:

AUTOCODER RUN TIIRU OUTPUT

AUTOCODER RUN THRU EXECUTION

EXECUTION RUN

AUTOCODER RUN

OUTPUT RUN

OUTPUT RUN TIIRU EXECUTION

Each processor job description includes:

1. Assumed input device. This entry refers to the de-
vice on which the mveur file is assumed to be lo-
cated. For the 1402, READER 1 means that the cards
arc selected into stacker 1. For the 1442, READER 1
means unit 1.

- Input. This entry refers to the type of input for the
job.

3. Assumed output device. This entry refers to the de-
vice on which the vist file, the MEssack file, and the
outpur file are assumed to be located. For the 1403,
PRINTER 2 means that 132 print positions are avail-
able. For the 1443, PRINTER 2 means that 144 print
positions are available. For the 1402, puncH 4 means
that the cards ate selected into stacker 4. For the
1442, punci 1 means unit 1.

4. Output. This entry refers to the type of output that
the user always gets as a result of the job.

5. Output options available. This entry refers to the
type of output the user can get by using output op-
tion (oPTN) cards.

6. Required user assignments. This entry describes any
additional logical file assignments that the user must
make to perform the job.

7. Control cards. This entry describes the method of
punching any required control cards and output op-
tion (orPTN) cards.

Notes: 1. Any logical file assumed assignment can be changed

by using an asoN card. (See Changing File Assign-
ments.)

2. NoTE and pAUSE cards can be placed between, but
not within job decks.

o

Conventional Assembly

A conventional assembly refers to the results normally
associated with assembling an object program. All in-
formation concerned with required control cards and
the manner of punching the control cards is included
in the following section.

Purpose of Processor Input Output
Job Job
Documentation Object Program Messages
Source | Autocoder | Object |CTL Card Source Program | Program | Condensed- | Self- Coreload | Autocoder | Location | Location | Resequenced
Program | Text Program |Diagnostics | Diegnostics Listing | Loader Loading | Format Text of of Text | Source
(card (if CTL card | and Label Table Format Format Coreload Deck
deck or [contain or Cross-ref-
coreload |errors) erence Listing*¥
format)
Conventional | AUTOCODER RUN YES YES YES YES T YESV?T OPTtt OPT OPT* OoPT
Assembly THRU OUTPUT
Load-and-Go| AUTOCODER RUN YES YES YES YES YES YES
THRU EXECUTION
Delayed EXECUTION RUN YES
Execution
Partial AUTOCODER RUN YES YES YES YES YES
Processing
QUTPUT RUN YES oPT OPT OPT OPT OPT* OPT
QUTPUT RUN YES YES YES YES
THRU EXECUTION
** Depend on CTL card specifications
+ Additional listings and condensed-loader decks are available. t1 Specified in CTL card or Output OPTN card.
* Message is associated with the Coreload option. V' Unless the self-loading format is specified in the CTL card.

Figure 6. Processor Jobs

Autocoder Run Thru Output

This is the type of run that results in a conventional
assembly.

Assumed Input Device: INPUT file on READER 1.
Input: Source program.

Assumed Output Devices: 11ST file on PRINTER 2, MES-
sACE file on PRINTER 2, ouTpuT file on punch 1 (1442)
or puncH 4 (1402).

Output:

1. crL diagnostic messages, if errors are sensed.

9. Source-statement diagnostic messages, unless thé
crL card specifies that the diagnostic phases be
omitted.

3. Cross-reference listing, label table, or neither, de-
pending on crL card specification.

4. Program listing (100-character or 120-character).

5. Object program in the condensed-loader format
(six-card loader for 1401 or 1460, seven-card
loader for 1440), or an object program in the self-
loading format, if specified in the cTL card.

Output Options.Available:
1. Additional program listing. To obtain this option,
use a LIST OPTN card.
2. Object program in the condensed-loader format.
To obtain this option, use a PUNCH OPTN card.
3. Object program in the self-loading format. To ob-
tain this option, use a PUNCH OPTN card.

4. Object program in the coreload format and a mes-
sage specifying the start and END addresses of
the coreLoap file. To obtain this option, use a
CORELOAD OPTN card.

Required User Assignments: 1f the object program is to
be punched into cards, the user does not have to
make any file assignments. However, if an object
program in the coreload format is desired, the cORE-
Loap file must be assigned before the job is per-
formed. Use a CORELOAD AscN card to define the file.

Control Cards:
1. The run card is the only control card required for
a conventional assembly. Punch the rRuN card in
the following manner:

Columns Contents
6-14 AUTOCODER
16-18 RUN
21-24 THRU
26-31 ouTPUT

9. The following cards are punched only if the user
wishes any of the available output options. Any
one or all of these cards can be used with a con-
ventional assembly.

a. LisT opTN for an additional program listing.
Punch the 11sT oPTN card in the following manner:

Columns Contents
6-9 LIST
16-19 OPTN
21-22 Number-of lines (01-99) per page

(If left blank, user’s carriage control tape will regulate
listing.)
Note: If the spce 2 control statement is used with the LiST OPTN
card, the maximum number of available statements per page
is 08. If sPCE 3 control statement is used, the maximum number
is 97.

17

b. puncH opIN for card formats. Use the punch
ortN card only if an additional object deck is
desired. Punch the card in the following manner:

Columns Contents
6-10 PUNCH
16-19 OPTN
21 S if the self-loading format is desired; blank

if the condensed-loader format is desired

¢. CORELOAD OPTN for coreload format. Punch the
CORELOAD OPTN card in the following manner:

Columns Contents
6-13 CORELOAD
16-19 OPTN

If the coreLoaD oPTN card is used, a CORELOAD
ascN card, which precedes the run card, must be
used to define the coreLoaD file. Punch the core-
LOAD ASGN card in the following manner:

Columns Contents
6-13 CORELOAD
16-19 ASGN
21-57 1301 UNIT n, START nnnnnn, END nnnnnn

or
1311 UNIT n, START nnnnnn, END nnnnnn

The value of n represents the number of the disk
unit, and can be 0, 1, 2, 3, or 4; nnnnnn repre-
sents a disk address. The limits specified must
define an area large enough to contain the object
program. When punching the CORELOAD AsGN
card, blanks must be present in columns 21-57

where indicated in the format.
d. resEQ oPTN for a resequenced source deck.

Punch the meseQ oprN card in the following

manner:

Columns Contents
6-10 RESEQ
16-19 OPTN

Arrangement. The arrangement of input cards is shown
in Figure 7. opTN cards can be in any order.

OPTN Cards
/[END

«—— Optional

/Source Statements
(CTL (Optional)
(JOB (Optional)

AUTOCODER RUN
THRU OUTPUT

Source Program Deck

CORELOAD ASGN

[e———— Used with CORELOAD OPTN

Figure 7. Conventional Assembly

18 Autocoder (Disk) Operating Procedures

Note: If the puncH opTN and/or the RESEQ oPTN is chosen and
the punch is 1442 and the conTROL and outpur files are
assigned to the same unit, the user must follow each of
the optN cards with a sufficient number of blank cards.

Load-and-Go

This is similar to the standard load-and-go operation.
The difference is that the object program is available
on the coreLoab file for delayed execution. All infor-
mation regarding required control cards and the man-
ner of punching these control cards is contained in the
following section.

Avutocoder Run Thru Execution

This is the type of run that results in load-and-go.
Assumed Input Device: iNpuT file on READER 1.
Input: Source program.

Assumed Output Devices: MESSAGE file on PRINTER g,
LisT file on PRINTER 2.

Output:

1. crL diagnostic messages if errors are sensed.

2. Source-statement diagnostic messages, unless the
crL card specifies that the diagnostic phases be
omitted. ‘

3. Cross-reference listing, label table, or neither, de-
pending on c1L card specification.

4. Program listing.

5. Object program in the coreload format and a mes-
sage specifying the sTart and Enp addresses of
the program that is stored on the coreLoab file in
disk storage.

Output Options Available: None.

Required User Assignments: The coreLoAD file must be
defined by the user before the job is performed. Use
a CORELOAD AsGN card specifying the start and Enp
addresses of the coreLoa file to define the file.

Additional Results: The object program is loaded into
core storage and control is transferred to it.

Control Cards: Two control cards, a ru~x and an AscN
card, are required for the load-and-go option.

1. A coreLOAD asGN card, which precedes the run

card, must be used to define the coreroap file.

Punch the corkLoap ason card in the following

manner:
Columns Contents
6-13 CORELOAD
16-19 ASGN
21-57 1301 UNIT n, START nnnnnn, END nnnnnn

or
1311 UNIT n, START nnnnnn, END nnnnnn

The value n is the number of the disk unit, and
can be 0, 1, 2, 3, or 4; nnnnnn represents a disk
address. The limits specified must define an area
large enough to contain the object program. When
punching the coRELOAD AsGN card, blanks must be
present in columns 21-57 where indicated in the

format.
2. Punch the required RuN card in the following
manner:
Columns Contents
6-14 AUTOCODER
16-18 RUN
21-24 THRU
26-34 EXECUTION

Arrangement: The arrangement of input cards is shown
in Figure 8.

Delayed Execution

This job enables the user to execute an object program
under the control of the Autocoder System.

Note: If the syscL macro was not included in the source
program, control will not be returned to the Autocoder
System after execution of the object program.

Execution Run

This is the type of run that is used when an object pro-
gram is executed in a stack of jobs.

Assumed Input Device: INpUT file on READER 1.
Input: Object program.

Assumed Output Devices: Not applicable.
Output: Not applicable.

Output Options Available: Not applicable.

Required User Assignments: If the input for the run is
an object-program card deck in either the condensed-
loader or self-loading format, no INPUT AsGN card is
required. However, if the input for the run is an ob-
ject program in the coreload format, the wveur file
must be defined before the job is performed. Use an
INPUT ASGN card to define the file.

C END

Source Stu.temen.fs
/ CTL (Optional)
/ JOB (Optional)

AUTOCODER RUN
THRU EXECUTION

CORELOAD ASGN

Source Program Deck

Figure 8. Load-and-Go

Control Cards:

1. An INpPUT ASGN card is required if the object pro-
gram is in the coreload format. The mPpuT ASGN
card precedes the run card. Punch the INPUT ASGN
card in the following manner:

Columns Contents
6-10 INPUT
16-19 ASGN
21-57 1301 UNIT n, START nnnnnn, END nnnnnn

or
1311 UNIT n, START nnnnnn, END nnnnnn

The value n is the number of the disk unit, and
can be 0, 1, 2, 3, or 4; nnnnnn represents a disk
address. The starT and Exp disk addresses of the
object program are given in the message printed
at the completion of the operation that built the
corerLoap filee When punching the INpUT ASGN
card, blanks must be present in columns 21-57
where indicated in the format.

2. Punch the required RuN card in the following

manner:
Columns Contents
6-14 EXECUTION
16-18 RUN
21-? [JOB card operand]
76-80 [JOB card identification]

If the object program is in the coreload format,
the joB card information in the rRun card (if any
is punched) is compared with the jos card infor-
mation in the object program (on disk) to ensure
that the correct disk address has been specified in
the INPUT ASGN card.

Arrangement: The arrangement of input cards is shown
in Figures 9 and 10. If an INPUT ASGN card is used, it
must precede the RUN card.

Note: For 1402 assign the conTrOL and ivpur files to READER
0 to insure that all input cards will be in the N pocket.

EXECUTION RUN

Figure 9. Delayed Execution (Object Deck)

/ EXECUTION RUN
INPUT ASGN

Figure 10. Delayed Execution (Coreload Format)

19

Partial Processing

The Autocoder System permits the user to select cer-
tain processors in the Autocoder System. This feature
enables the user to save the Autocoder text for future
output processing. All information regarding required
control cards and the manner of punching these control
cards is contained in the following section.

Avutocoder Run

The result of this job is Autocoder text. The text re-
quires processing by the Output processor because it is
not in a usable form.

Assumed Input Device: INpuT file on READER 1.
Input: Source program.

Assumed Output Devices: MEssaGE file on PRINTER 2,
L1sT file on PRINTER 2.

Output:

1. crL diagnostic messages, if errors are sensed.

2. Source-statement diagnostic messages, unless the
crL card specifies that the diagnostic phases are
to be omitted.

3. Cross-reference listing, label table, or neither, de-
pending on crL card specification.

4. Autocoder text and a message specifying the
START address of the text.

Output Options Available: None.

Required User Assignments: Because the result of proc-
essing is Autocoder text, an area (outpur file) in disk
storage must be defined. The output file must be de-
fined before the job is performed. Use an ourpur
AscN card to define the file.

Conirol Cards:

1. An ourpur aseN card, which precedes the run
card, must be used to define the ourpur file be-
cause the Autocoder text is written in disk stor-
age. Punch the output ascn card in the following

manner:
Columns Contents
6-11 OUTPUT
16-19 ASGN
21-57 1301 UNIT n, START nnnnnn, END nnannn

O

1?3.11 UNIT n, START nnnnnn, END nnnnnn
The value n indicates the number of the disk unit,
and can be 0, 1, 2, 3, or 4; nnnnnn represents a
disk address. The limits specified must define an
arca large enough to contain the Autocoder text.
When punching the ourrur asen card, blanks
must be present in columns 21-57 where indicated
in the format,

20 Autocoder (Disk) Operating Procedures

2. Punch the required run card in the following

manner:
Columns Contents

6-14 AUTOCODER
16-18 RUN

Arrangement: The arrangement of input cards is shown
in Figure 11.

Ovutput Run

This job enables the user to process the Autocoder text
produced by an aurocoper ruN and to specify the
kind(s) of output he desires.

Assumed Input Device: This must be an area in disk
storage defined by the user.

Input: Autocoder text.

Assumed Output Devices: MESSAGE file on PRINTER ¢,
LisT file on PRINTER 2, outPUT file on PUNCH 1 (1442)
or PUNCH 4 (1402).

Output: The kind of output must be specified by the

user.

Output Options Available:

1. runcH option—an object program in the con-
densed-loader or self-loading format. To obtain
this option, use a PUNCH oPTN card.

2. CORELOAD option—an object program in the core-
load format and a message specifying the sTART
and Exp addresses of the program. To obtain this
option, use a CORELOAD oPTN card.

3. LisT option—a 100-character or 120-character pro-
gram listing. To obtain this option, use a LIsT OPTN
card.

4. RESEQ option—a resequenced source deck. To ob-
tain this option, use a RESEQ oPTN card.

Required User Assignments:
1. The vput file must be defined before the job is

performed. Use an INPUT ascN card to define the
file.

(END

(Source Srotements‘

~(CTL (optional)

(JOB (optional)

_{ AUTOCODER RUN
OUTPUT ASGN

Source Program Deck

Figure 11. AUTOCODER RUN

2. If an object deck in the condensed-loader format is

desired, no outpur file need be defined. (The
ourpur file is assumed to be punch 1 for 1442 and
puncH 4 for 1402.) However, if an object program
in the coreload format is desired, the CORELOAD
file must be defined before the job is performed.
Use a CORELOAD AsGN card to define the file.

Control Cards:
1. An wvpur asoN card is required because the Auto-

coder text is in disk storage. The INPUT ASGN card
precedes the rRuN card. Punch the NpUT AsGN card
in the following manner:

Columns Contents
6-10 INPUT
16-19 ASGN
21-57 1301 UNIT n, START nnnnnn, END nannnn

or
1311 UNIT n, START nnnnnn, END nnnnnn

The value n indicates the number of the disk unit,
and can be 0, 1, 2, 3, or 4; nnnnnn represents a
disk address. The start address of the Autocoder
text is given in the message printed at the begin-
ning of an aurocoper RUN. The END address is
given in the message printed when the disk out-
rut file is closed. When punching the INPUT ASGN
card, blanks must be present in columns 21-57

where indicated in the format.
. Punch the required run card in the following

manner:

Columns Contents
6-11 OUTPUT
16-18 RUN ‘

. Output option cards:
a. Punch the puncu oprN card in the following
manner:

Columns Contents
6-10 PUNCH
16-19 OPTN
21 S if the self-loading format is desired. Blank

if the condensed-loader format is desired.

b. Punch coreLoap optn card in the following
manner:

Columns Contents
6-13 CORELOAD
16-19 OPTN

If the coreLoAD OPTN card is used, a CORELOAD
asoN card, which precedes the rRun card, must be

Note:
card,
is 98.
is 97.

used to define the coreLoap file. Punch the CORE-
LoAD ASGN card in the following manner:

Columns Contents
6-13 CORELOAD
16-19 ASGN
21-57 1301 UNIT n, START nnnnnn, END nnnnnn

or
1311 UNIT n, START nnnnnn, END nnnnnn

The value n indicates the number of the disk unit,
and can be 0, 1, 2, 3, or 4; nnnnnn represents a
disk address. The limits specified must define an
area large enough to contain the object program.
When punching the coreLoap ascN card, blanks
must be present in columns 21-57 where indicated
in the format.

c. Punch the vist opIN card in the following
manner:

Columns Contents
6-9 LIST
16-19 OPTN
21-22 Number of statements (01-99) per page.

(If left blank, user’s carriage control tape will regulate
listing.)

If the SPCE 2 control statement is used with the L1sT oPTN
the maximum number of available statements per page
If sPCE 3 control statement is used, the maximum number

d. Punch the reseQ optN card in the following
manner:

Columns Contents
6-10 RESEQ
16-19 OPTN

Arrangement: The arrangement of input cards is shown

in

Figure 12. At least one option card is required in-

dicating the type of output. The option cards can be

in
Note:

any order.

If the punci opTN and/or the RESEQ OPTN is chosen, and
the punch is 1442 and the controL and ouTpur files are
assigned to the same unit, the user must follow each card
with a sufficient number of blank cards.

Output Run Thru Execution

This job enables the user to process the Autocoder text

and

execute the resulting object program.

(OPTN Cards
(OUTPUT RUN

{#——— One is required

(CORELOAD ASGN

INPUT ASGN
[¢———————Used with CORELOAD OPTN

Figure 12. OUTPUT RUN

21

Assumed Input Device: The iNput file must be an area
in disk storage that is defined by the user indicating
the location of the Autocoder text.

Input: Autocoder text.

Assumed Output Devices: MESSAGE file on PRINTER 2
and p1sT file on PRINTER 2.

Output:
1. Program listing (100-character or 120-character).
2. Object program in the coreload format and a mes-
sage specifying the sTart and Enp addresses of
the program.

Output Options Available: None.

Required User Assignments: The iNpuT and CORELOAD
files must be defined before the job is performed.
Use an INPUT AsGN card and a CORELOAD asceN card to
define the files.

Additional Results: The object program is loaded into
core storage and control is transferred to it.

Control Cards:

1. An iNpuT AsGN card is required because the Auto-
coder text is in disk storage. The vpuT AseN card
precedes the RUN card. Punch the mNpuT asoN
card in the following manner:

Columns Contents
6-10 INPUT
16-19 ASGN
21-57 1301 UNIT n, START nnnnnn, END nnnnnn

or
1311 UNIT n, START nnnnnn, END nannnn

The value n indicates the number of the disk unit,
and can be 0, 1, 2, 3, or 4; nnnnnn represents a
disk address. The disk address of the Autocoder
text is given in the message printed at the com-
pletion of arr Autocoper RUN. When punching the
INPUT ASGN card, blanks must be present in col-
umns 21-57 where indicated in the format.

2. A CORELOAD AsGN card is required because the ob-
ject program is written in disk storage on the
coreLoAD file. The corELOAD AsGN card precedes
the run card. Punch the coreLoAD asoN card in
the following manner:

Columns Contents
6-13 CORELOAD
16-19 ASGN
21-57 1301 UNIT n, START nnnnnn END

The value n indicates the number of the disk unit,
and can be 0, 1, 2, 3, or 4; nnnnnn represents a
disk address. The limits specified must define an
area large enough to contain the object program.
When punching the coreLoaD aseN card, blanks
must be present in columns 21-57 where indicated
in the format,

3. Punch the required run card in the following

manner:
Columns Contents
6-10 OUTPUT
16-18 RUN
21-24 THRU
26-34 EXECUTION

Arrangement: The arrangement of the input cards is
shown in Figure 13. The aseN cards can be in any
order.

Changing File Assignments
Each logical file defined by the Autocoder System, with
the exception of the system and coreLoap files, is as-
signed to a specific input/output device by the System
Control Program. These assignments can be changed
by using ascN cards (and, in certain instances, T
cards — see INIT Card). The uses of the logical files
should be considered when deciding file assignments.
Figures 14 and 15 illustrate the uses of all the logical
files, except the systeMm file, that are required for proc-
essor jobs. The system file, on which the Autocoder
System resides, is required for all System operations.
In addition to the cards listed in Figure 14, the con-
TROL file contains:

1. The 1402 or 1442 Card Boot, which is the first set of
cards required for stack processing, (A stack consists
of one or more jobs.)

2. All aseN cards. Some asGN cards are required for
particular processor jobs. Other asoN cards cause
file-assignment changes which make it possible to
utilize the input/output devices not included in the
assumed file assignments.

3. miT, NOoTE and PAUSE cards, which may be inserted
between jobs,

4. A mavrT card, which must be the last card in a stack.

OQUTPUT RUN
THRU EXECUTION

[CORELOAD ASGN
INPUT ASGN

or
1311 UNIT n, START nnnnnn, END nnnnnn

22 Autocoder (Disk) Operating Procedures

Figure 13. OUTPUT RUN THRU EXECUTION

Processor Job

Operation Files

Internal Files

CONTROL

MESSAGE

WORK1

WORK 2

WORK3

AUTOCODER RUN
THRU OUTPUT

CORELOAD ASGN
card if the CORE~
LOAD OPTN card
is used,

RUN card.

CTL diagnostics, if the CTL card contains errors.
Source statement diagnostics, if specified (CTL card).
CORELOAD OUTPUT COMPLETE ON

ﬂi‘,}f UNIT n, START nnnnnn, END nnnnnn
CORELOAD HEADER — (52 positions), 1D — (5 positions)

These messages are printed if the CORELOAD ASGN and
CORELOAD OPTN cards are in the CONTROL file,

Intermediate and final
results of Autocoder
processing (Autocoder
text).

References for cross
reference listing, if
specified (CTL card).

Used by the Macro Gen-
erator and the Autocoder
Processor.

Labels for cross reference
listing or label table.

Intermediate results of
Output processing if
the CORELOAD ASGN
and CORELOAD OPTN
cards are in the CON-
TROL file.

AUTOCODER RUN

CORELOAD ASGN

CTL diagnostics, if the CTL card contains errors.

Intermediate and final

References for cross

Used by the Macro Gen-

(punched~card
object program)

THRU EXECUTION card, Source statement diagnostics, if specified (CTL card). tesults of Autocoder reference listing, if erator and the Autocoder
RUN card. CORELOAD OUTPUT COMPLETE ON processing (Autocoder specified (CTL card). Processor,
1311 text),
ISO]E UNIT o, START pnnon, END apnnnn Labels for cross reference
listing or label table .
CORELOAD HEADER —~ (52 positions), 1D — (5 positions)
Intermediate results of
Output processing .
EXECUTION RUN RUN card.

EXECUTION RUN
(object program in
coreload format)

INPUT ASGN card,
RUN card.

1301
UNIT n AT ADDRESS nnnnnn

INPUT FILE STARTS ON ;wné

AUTOCODER RUN

OQUTPUT ASGN card.

RUN card.

CTL diagnostics, if the CTL card contains errors.
Source statement diagnostics, if specified (CTL card).

OUTPUT FILE STARTS ON gm”

References for cross
reference listing, if
specified (CTL card).

Used by the Macro Gen-
erator and the Autocoder
Processor.,

THRU EXECUTION

CORELOAD ASGN
card,
RUN card.

1311
INPUT FILE STARTS ON]30|$

UNIT n AT ADDRESS nnnnnn

CORELOAD OUTPUT COMPLETE ON

1311
'3015 UNIT n, START nnnnnn, END nnnnnn

CORELOAD HEADER —~ (52 positions), 1D — (5 positions)

1301
UNIT n AT ADDRESS nnnnnn Labels for cross reference
listing or label table.
OUTPUT RUN INPUT ASGN card. 1311 Intermediate results of
CORELOAD ASGN | /NPUT FILE STARTS ON =1301E Output processing if
card if the CORE= | UNIT n AT ADDRESS nnnnnn the CORELOAD ASGN
LOAD OPTN card and CORELOAD OPTN
is used., CORELOAD QUTPUT COMPLETE ON cards are in the CON-
RUN card. 1311 TROL file.
Output OPTN card(s). | J1301§ UNIT n/ START nnnnnn, END nannnn
(At least one must
be used.) CORELOAD HEADER ~— (52 positions), ID — (5 positions)
The last two messages are printed if the CORELOAD ASGN
and CORELOAD OPTN cards are in the CONTROL file.
OUTPUT RUN INPUT ASGN card. Intermediate results of

Output processing.

Figure 14. Use of Operation and Internal Logical Files

The contents of the mEssace file, as shown in Fig-
ure 14, provide job documentation. Other messages
that also appear on the MEessace file are: diagnostics
relating to operating procedures, instructions to the
machine operator, AseN card images.

As shown in Figure 14, the work files contain inter-
mediate results of processing, worki is required for
Autocoder processing. If AUTOCODER RUN THRU OUTPUT
Or AUTOCODER RUN THRU EXECUTION is speciﬁed, WORK1
becomes the outpur file from the Autocoder processor
and the wvpur file to the Output processor.

WORK2 is used by the Autocoder processor if a cross-
reference listing is requested by the c1L card. After the

listing has been built on work?, it is transferred to the
List file,

WORK3 is used by the Macro Generator and the Auto-
coder processor. It is also required whenever the corg-
Loap file is to be used. The coreroap file is used if
THRU EXECUTION is specified in a Run card, or if a core-
LOAD OPTN card is used for an AUTOCODER RUN THRU
OUTPUT Or OUTPUT RUN. If THRU EXECUTION is specified
in a RUN card, the coreLoap file becomes the iNpUT file
to the Execution processor.

Thus, the work1 and coreLoap files act as transition

files between processors when a THRU option is speci-
fied.

23

External Files

Processor Job

INPUT OUTPUT

LIST

CORELOAD

LIBRARY

AUTOCODER RUN
THRU OUTPUT

Object program in condensed=-loader
format, unless self-loading format
is specified in the CTL card,

Object program(s) in the self-loading
format, if specified (PUNCH
OPTN or CTL card).

Additional object program(s) in
condensed-loader format, if
specified (PUNCH OPTN).

Resequenced source deck(s) if speci-

fied (RESEQ OPTN):

Source program,

Label table or cross-refer—
ence listing if specified

(CTL card).
Program listing.
Additional program list-

ing(s), if specified
(LIST OPTN).

Object program in the
coreload format, if
specified (CORE-
LOAD OPTN},

Used during macro
generation.

AUTOCODER RUN
THRU EXECUTION

Source program,

Label table or cross-refer-
ence listing if specified
(CTL card).

Program listing.

Object program in
coreload format,

Used during macro
generation,

EXECUTION RUN Object program

Intermediate and final results of
Autocoder processing (Auto-
coder text).

AUTOCODER RUN | Source program

Label table or cross-refer-
ence listing if specified
(CTL card).

Used during macro
generation,

THRU EXECUTION

OUTPUT RUN Autocoder text, Object program(s) in condensed- Program listing(s), if Object program in
loader and/or self-loading format, specified (LIST OPTN), coreload format, if
if specified (PUNCH OPTN), specified (CORE-

Resequenced source deck(s), if LOAD OPTN),
specified (RESEQ OPTN),

OUTPUT RUN Autocoder text, Program listing. Object program in

coreload format.

Figure 15. Use of External Logical Files

Preparing ASGN Cards

ascN cards enable the user to change file assignments
for one or more jobs in a stack. The general format for
an AscN card is:

device
ASGN ; OMLE

The file-name is the specific logical file; device is the
input/output unit to which the logical file is assigned.

The assumed file assignments and aseN card formats
relating to specific files are shown in Figure 16. Valid
device entries are shown in Figure 17.

Leave a blank between items in the operand field as
shown in Figure 16. If, for example, the outpur file is
to be assigned to disk area 004000 through 004799 on
1301 unit 1, the user would code the ason card for
punching as shown in Figure 18. The Enp address to
be punched is the address of the next available sector,
not the address of the last sector to be used.

file-name

File Considerations

CONTROL File and INPUT File. If both the coNTROL
and 1npuT files are assigned to the reader, the assign-
ments must be identical. For example, if the system
is a 1440 and the conTRoL file is assigned to READER 1,
the INpuT file must also be assigned to READER 1.

MESSAGE File and LIST File. If both the MESSAGE
and vist files are assigned to the printer, the assign-

24 Autocoder (Disk) Operating Procedures

ments must be identical. For example, if the system
is a 1401 and the MEssAGE file is assigned to PRINTER
2, the L1sT file must also be assigned to PRINTER 2.

WORKI File. The disk area required for the work1
file depends upon the number of statements in the
source program after macro generation and upon the
number of literals used in the program. The user
must allow one sector for each statement plus one
sector for each unique literal.

WORK2 File. This file must contain at least 200
sectors for every 600 references to labels and area-
defining literals in the source program. Storage
from this file is used in blocks of 200 sectors. If
the amount of storage left in the file is less than 200
sectors and data remains to be stored in the file,
the assembler will halt, indicating that an area is
too small.

WORKS3 File. This file requires a minimum of 300
sectors of disk storage. Additional sectors could be
required, depending on the number of labels and
area-defining literals used in the source program.
At least 200 sectors are required for every 600 dif-
ferent labels and area-defining literals used in the
source program. However, in storing labels and
area-defining literals, the assembler uses WORK3
storage in sections of 200 sectors. Thus, if the as-
sembler fills 200 sectors, and more labels or area-
defining literals remain to be stored, at least 200
sectors must remain in the WORK3 area or the

ASGN Card Format Assumed Assignment Remarks
Label Field Operation Field Operand Field
(Columns 6-15) | (Columns 16-20) (Columns 21-72)
SYSTEM ASGN 1311 UNIT n 1311 unit == user-assigned The SYSTEM ASGN card is the
1301 UNIT 0 1301 unit =~ must be assigned to only required ASGN card. It
UNIT 0 must follow the Card Boot in a
stack of jobs. Any other SYSTEM
ASGN cards in the stack are
invalid,
If the user desires that the Auto-
coder System use less than the num|
ber of core-storage positions avail-|
able in the processor machine,
punch a comma in column 32 and
4K, 8K, 12K, or 16K beginning
in column 34.
CONTROL ASGN READER n READER 1
CONSOLE PRINTER
MESSAGE ASGN PRINTER n s PRINTER 2 When the MESSAGE file is
CONSOLE PRINTER assigned to the CONSOLE
PRINTER, carriage control
characters used with the
1403 or 1443 printer may
appear in the message .
LIST ASGN PRINTER n PRINTER 2 If the LIST file Is assigned to
1317 UNIT n, START nnnpnn, END pnnnnn PRINTER 1 (1403), the Output
1301 UNIT 0, START nnnnnn, END nnnnnn processor develops a 100 -
“OMIT character program listing .
INPUT ASGN READER n READER 1
1311 UNIT n, START nnnnnn, END nnnnnné
1301 UNIT n, START nnnnnn, END nnnnnn
OUTPUT ASGN PUNCH n
1311 UNIT n, START nnnonn, END nnnnnn || PUNCH 4 (1401 and 1460)
1301 UNIT n, START nnnnnn, END nnnnnn §| PUNCH 1 (1440)
OMIT
LIBRARY ASGN 1311 UNIT n, START nnnnnn, END nnannn { [}1301 1311 is assumed if the
iIGOI UNIT 7, START nnnnnn, END nnnnnn% {1311%“"‘” 0 START 012900, END 019980 | S\crep file 1s assigned to
1311; 1301 is assumed if the
WORKT ASGN 1311 UNIT n, START nnnnnn, END nnnnnn{ | {1313 SYSTEM file is assigned to
;ISOI UNIT i, START pnnnnn, END nnnnnn% 11301 UNIT 0,. START 004800, END 011200 | y50,
1311 UNIT n, START nnnnnn, END nnnnnn (| §1311
WORK2 ASGN 3]301 UNIT n, START annnnn, END pnanan |}1301 UNIT O, START 011200, END 012400
WORK3 ASGN 1311 UNIT n, START nnnnnn, END nnnnnn { |§1311
1307 UNIT n, START nnnnnn, END nnnnnn § |}1301{UNIT O, START 012400, END 012900
CORELOAD ASGN 5 1311 UNIT n, START nnnnnn, END pnnnnn) | OMIT
130) UNIT n, START nnnonn, END nnnnnn
) OMIT

NOTE: If the user's system contains Autocoder and COBOL, the WORK 1 assumed assighment
is changed from START 004800, END 011200 to START 007200, END 010400, The
assumed assignments for WORK2 and WORK3 remain the some .

Figure 16. ASGN Card Formats and Assumed Assignments

assembler will halt indicating that an area is too

small.

Note: If the systEM file is on a 1311 drive other than drive 0
and drive 0O is not on-line, the user must change the
woRkl, work2, and wWoRK3 file assignments because the

Autocoder System assumes that the work files are on
1311 uniT 0.

CORELOAD File. The disk area required for an ob-
ject program in the coreload format depends upon
the type of statements used in the source program,
the number of characters (instructions and data) in
the object program, and the number of loading in-
structions developed by the Output processor.

When the Output processor transfers the object
program to the coreLoabp file, it builds as many full
90-character sectors as possible. These 90-character
sectors contain data (such as a constant defined by
a pcw statement) and assembled instructions (such
as M 411 199). Each pa, ps, ORG, LTORG, XFR, and EX
statement causes the processor to begin building a

new set of 90-character sectors.

Use the following as a guide for approximating the
disk area required:

1L

2.

One sector for the HEADER record. This record
contains the operand and the identification from
the last yoB card.

One sector for every 24 word marks specified in
each set of subsequent pa entries.

One sector for each record mark specified in
each pa header.

Two sectors for a pa header that specifies that
the defined area(s) be cleared.

. One sector for each ,¢ specified in the source

program (pa header, pcw, and pc statements).

. One sector for each Ex, xrr, and END statement.

Each of these sectors contains a branch to the
program at object time.

One sector for every 90 object-program charac-

25

Device Entry and Values of n and nnnnnn

Remarks

ﬂgé:z UNIT n, START nnnnnn, END nnnnnn

n is the number of the disk unit, and can be
0, 1, 2, 3, or 4; nnnnnn is a disk address. 1.

of 40.

multiples of 20.

The END address is the address of the next available sector.

The values of nnnnnn must adhere to the following rules:

WORK]1 file. If the disk unit is 1311, the START address must be a
multiple of 200, If the disk unit is 1301, the START address must be a
multiple of 800. The END address (1311 and 1301) must be a multiple

2. WORK2 and WORKS3 files. The START address (1311 and 1301) of each
file must be a multiple of 100. (A START address that is a multiple of
200 results in the fastest assembly.) The END acddress (1311 and 1301)
of each file must be a multiple of 10.

3. LIBRARY file. The START and END addresses (1311 and 1301) must be

4, OUTPUT file. It is not necessary to specify that this file start or end af
any particular multiple. However, Autocoder will only use the file if
it begins at a multiple of 40.

In each of the first three cases, if the rules are violated, the system aufo-
matically narrows in the disk area to an area that does adhere to the rules.
Incorrect addresses are not automatically corrected for the QUTPUT file.

READER n
For 1402, ncanbe 0, 1, or 2.

For 1442, n can be 1 or 2.

For 1402, n represents the pocket into which the cards are stacked.

For 1442 and 1444, n represents the number of the unit.

PUNCH n
For 1402, n can be 0, 4, or 8.
For 1442, ncanbe 1 or 2

For 1444, n must be 3.

PRINTER n

n can be 1 or 2

n represents the number of print positions available on the 1403 or 1443.
For 1403, a 1 indicates 100 positions and a 2 indicates 132 positions.
For 1443, a 1 indicates 120 positions and a 2 indicates 144* positions.

* Only 132 print positions are used by the Autocoder System.

CONSOLE PRINTER

The console printer for the control file must be an IBM 1447 without a
buffer feature or an IBM 1407. An IBM 1447 with a buffer feature can be
used for the message file, although the buffer feature is not used.

OMIT

Select this option when the file is not to be used by the Autocoder System.
LIST, OUTPUT, and CORELOAD are the only files that can be omitted.

Figure 17. Valid Device Entries

Label ratl OPERAND
43

38 40

30
XN AN 1301, UNI T

000,.. £

Figure 18. Coding for an OUTPUT ASGN Card

ters that precede each pa, ps, ORG, LTORG, XFR,
EX, and END statement. Approximate the number
of 90-character sectors in each set by:

a. Allowing seven object-program characters for
each imperative and declarative, except ps
and pa, statements.

b. Approximating the number of generated
statements associated with each macro in-

struction and multiplying the approximation
by 7.

26 Autocoder (Disk) Operating Procedures

0,

%

8. One sector for the first ten object-program char-
acters in each set of 90-character sectors. Be-
cause the first ten positions of each set of 90-
character sectors must contain a disk control
word, the processor builds a sector that contains
the first ten object-program characters in a set
and the instructions that load the ten characters
at object time.

9. At least one sector for the last group of object
program characters before each bs, pa, org,

LTORG, XFR, EX, and END statement if the group
contains fewer than 90 characters. A maximum of
50 object-program characters can be contained
in one sector because the first portion of the sec-
tor contains instructions that load the object-
program characters at object time.

10. One sector to load each set of 90-character sec-
tors at object time.

To ensure that a sufficient disk area is allotted for
the coreroap file, the programmer should use his
source-program coding sheet to approximate the
number of sectors required. He should add five sec-
tors to his approximation to allow for cylinder over-
flow.

OUTPUT File. This file must be assigned to a disk
area for an AUTOCODER RUN because the Autocoder
text (100-character records) must be on disk for
Output processing.

The disk area required for the Autocoder text is
determined in the same mamner as the area required
for workl.

Note: Do not assign the ourpur file to a disk area for an
AUTOCODER RUN THRU OUTPUT Or for an OUTPUT RUN.,

LIBRARY File. The method for determining the disk
area required for a LiBRARY file is given in Preparing
Library Jobs.

A LsrARY file is required for an AUTOCODER RUN,
an AUTOCODER RUN THRU OUTPUT, and an AUTOCODER
RUN THRU EXECUTION, The user must be sure to in-
clude a LiBRARY AsGN card in the stack if Autocoder
processing is to be performed and the vriBrary file
assignment (unit number and/or limits) differs from
that assumed by the Autocoder System.

Building a risrary file and transferring routines
to it are described under Preparing Library Jobs.

Note: 1If it is necessary to rebuild the Preprocessor,
the user can avoid destroying the LiBrary file that is
within the limits assumed by the Autocoder System.
Place a dummy rLiBRARY AsscN card ahead of the
auTtocopER RUN card which is the first card in the
section of the System deck labeled AUTOCODER PRE-
PROCESSOR. This dummy ascn card should specify a
disk area whose contents need not be saved. For
example, the area that is allotted to workl could be
specified.

Using ASGN Cards

At the beginning of stack processing, the System Con-
trol Program reads a list of assumed assignments into
core storage from the system file. Each assumed as-
signment remains in effect until an asen card for that
file is sensed. Any changed file assignment remains in
effect until the next aseN card for that file, or a HALT
card, is sensed.

If a file-assignment change is applicable for an entire
stack, place the ascn card immediately ahead of the
first RuN card.

If a file-assignment change is only applicable to a
specific job, place the asen card immediately ahead of
the rRuN card for that job. To change the file assignment
back to the assumed assignment or to a different as-
signment, place the ascn card immediately ahead of
the run card for the next job that requires the effective
file assignment to be changed.

Example. Figure 19 shows the use of ason cards. As-
sume that:

1. The stack consists of Job 1, Job 2, and Job 3.

2. The stack is to be on an 1BM 1460 system with
M 1311 Disk Storage Drives and an mMm 1301
Disk Storage Unit.

3. The System, workl, work2, work3, and LIBRARY
files are located on the 1311 unit 1.

4, The 1311 unit 1 and the 1301 unit 0 are on line.

5. aseN card A specifies systEM Asen 1311 unit 1.
A sysTEM AsGN card is required for each stack of
jobs.

6. aseN cards B, C, D, and E specify, respectively;
workl aseN 1311 uwnrr 1, start 004800, EnD
011200.
woRK2 AsGN 1311 uwnrr 1, start 011200, END
012400.
woRKk3 ASGN 1311 unrr 1, starr 012400, Enp
012900.

LIBRARY ASGN 1311 unrr 1, start 012900, END
019980.

These aseN cards are required because drive 0 is
not on-line. The limits of the files are those as-
sumed by the Autocoder System. Job 1 is an
AUTOCODER RUN THRU OUTPUT.

7. ascN card F specifies:

ouTtput ASGN 1301 unrr 0, starr 120000, EnD
125000.
This aseN card changes the assumed ourpur file
assignment (Punch 4) for Job 2, which is an
AUTOCODER RUN.

8. ascn card G specifies:

OUTPUT ASGN PUNCH 4.

This ascn card changes the user’s outrur file as-
signment back to the assumed ouvrrur file assign-
ment for Job 3, which is an AUTOCODER RUN THRU
output. Note that an w1t card could not be used
to restore the ourput assumed assignment, be-
cause an 1N1T card would restore all assumed file
assignments.

Batched Files

Batched files are defined as the external files npuUT,
ouTtpuT, LIST, and CORELOAD whose contents represent

27

(HALT

/

(Source Deck

AUTOCODER RUN
THRU OUTPUT
G(OUTPUT ASGN
/ Job 3
L Source Deck
{ AUTOCODER RUN
Job 2

F(OUTPUT ASGN
(Source Deck
AUTOCODER RUN
THRU OUTPUT
£ LIBRARY ASGN Job 1

0 WORK3 ASGN
c { WORK2 ASGN
8(WORKI ASGN
A (SYSTEM ASGN
/

1402 Card Boot

Figure 19. Changing File Assignments

one or more sequential sets of input to or output from
the processor(s).

The following example illustrates the advantage of
a batched coreLoab file by describing the building and
use of an object-program library.

Procedure: Perform a series of conventional assemblies
(AUTOCODER RUN THRU OUTPUT) using the CORELOAD
option. Follow the option card for each job with a
~NotE card that contains the program identification.
Record the messages that are printed during proc-
essing.

Result: The programs are assembled and batched
(stored sequentially) in the coreroap file. After each
program has been transferred to disk storage, a mes-
sage specifying the starT and enp addresses of the
program in disk storage is printed. The information
punched in the ~Note card is printed immediately
after the message. The inclusion of the ~NoTe card
ensures accurate documentation.

Future Use: When the object programs are required:

1. Refer to the messages that state the disk location
of the programs.

2. Prepare INPUT ASGN card(s) using the information
supplied in the message. The file containing the
programs becomes the ivpur file for one or more
EXECUTION RUN jobs.

a. If the programs are to be selected and executed

28 Autocoder (Disk) Operating Procedures

sequentially, only one iNpUT aseN card is required
for the stack because the programs are batched.
b. If the programs are to be selected randomly
and executed, an INpUT ASGN card is required for
each job.

Prepare an executioN run card for each job.
Perform the stack of jobs as described under
Running a Stack.

=

Preparing Library Jobs

Library jobs are associated with the maintenance of an
Autocoder LiBraRY file, which is a disk storage file that
supports the Autocoder macro facility. The file con-
tains a library table and library routines, such as Auto-
coder macros and IOCS.

The three library jobs are:

1. Library build which enables the user to define a
LBRARY file. A library-build job, performed when
the System is built, defines a rLiBrARY file on the
same disk unit as the system file. The limits of this
LIERARY file are 012900 and 019980. Thus, the as-
sumed assignment for the riBrary file is 1301 or
1311 unrr 0, starT 012900, ENDO19980.

After the library-build job has been performed,
the viBraRY file contains the library table and a
record that specifies the end-of-library name (99999).

The library table contains the end-of-library name
and its disk address.

2. Library listing which enables the user to obtain a
list of library routines, a list of routine-names, or a
punched-card deck that contains all the statements
currently in the LiBraRY file.

3. Library change which enables the user to insert
routines in a new LIBRARY file or to modify the con-
tents of an existing LiBrary file. A library-change
job, performed when the System is built, transfers
the Autocoder macros to the riBrary file after the
file has been defined by the library-build job.

Capacity of a LIBRARY File

The model statements that make up a library routine
are stored in the LiBrary file in the following manner:
the model statement is compressed and high-order
blanks are eliminated. The model statements are stored
as variable-length records in two-sector blocks. The
library table requires twelve sectors of the LiBRARY file.

The first two positions in every statement in the
LIBRARY file are used for a record count. The length of
a statement, including the record count field, is:

1. BooL or MATH statement: 18 characters plus oper-
ands and comments.

10

Labeled model statement: 18 characters plus oper-
ands and comments.

3. Unlabeled model statement with operands and/or
comments: 8 characters plus operands and com-
ments,

4, Unlabeled model statement with no operands or
comments:

a. 2 characters plus the operation code if column 6
is blank.

b. 8 characters if column 6 is not blank.

Column 6 can contain a special one-character label
that is associated with a BooL statement.

Note. To fully optimize the library arca, the user should not

leave more than two blanks between the operands and
a comment in a mode] statement becausc the librarian
phase of Autocoder cannot eliminate unnecessary blanks
within the statement.

Library Build

Each library-build job defines a vLiBrary file. The Li-
BRARY file contains a library table and a record that
specifies the end-of-library name (99999). The library
table contains the end-of-library name and its disk
address.

Perform a library change to insert routines in the
new LIBRARY file.

The library build enables the user to increase his
library facilities by:

1. Defining one or more LiBraRryY files within the limits
assumed by the Autocoder System. The use of small
LIBRARY files reduces the time required for librarian
jobs.

2. Reducing the size of the work files and extending
the riBrary file(s) into that area.

3. Defining one or more libraries that are not located
on the same disk unit as the system file.

The library build can also be used to define a Li-
BRARY file with the same limits as an existing LIBRARY
file. If the user wishes to delete most of the routines in
the file, he may find that it is easier to create a new
library table and perform a library change to insert
his routines in the riBRARY file, than it is to perform a
library change to delete the routines.

If a library build affects a previously defined rI-
BRARY file, any routines in the rLiBrary file before the
build will not be available at the end of the job be-
cause the library build destroys the old library table.

The control cards required for the library build job
are:

1. A LBRARY asGN card which is required if the assign-
ment of the LBrary file differs from that assumed
by the Autocoder System. This ascN card is punched
in the following manner:

Columns Contents
6-12 LIBRARY
16-19 ASGN
21-57 1301 UNIT n, START nnnnnn, END nnnnnn

or
1311 UNIT n, START nnnnnn, END nnnnnn

The value n indicates the number of the disk unit and
can be 0, 1, 2, 3, or 4; nnnnnn represents a disk address.
The limits of the new library must also be specified.

2. A ruN card punched in the following manner:

Columns Contents
6-14 AUTOCODER
16-18 RUN

3. An ortx~ card punched in the following manner:

Columns Contents
6-15 INITIALIZE
16-19 OPTN

The iNrr1aLize opTN card may be followed immediately
by the cards used to place the macros on the library,
beginning with the aAutocoper RuN card, as described
in Library Change. Figure 20 shows the arrangement
of the control cards.

29

Library Listing

Four kinds of output are available from the library-

listing job:

1. A listing of the names of all the routines (macros)
in the Autocoder library.

2. A listing of all the entries in every library routine.

3. A listing of the entries in specific library routines.

Sequence numbers of statements in a library routine
are listed under the column header ALTER. These se-
quence numbers should correspond to sequence num-
bers used in the DELET and INSER statements that are
required for library-change operations.

4. A punched-card deck that contains INSER and model
statements (one statement per card). Each routine is
preceded by an inser card. All the routines in the
LIBRARY file are punched if this option is selected.

Figure 21 shows a listing of the 1BM-supplied 1LpRCL
macro. The characters listed under column L are the
labels for BooL instructions.

The control cards for a library listing are:

1. A LiBRARY AsGN card which is required if the assign-
ment of the LiBraRry file differs from that assumed
by the Autocoder System. See Library Build for the
format of the LiBRARY AsGN card.

2. A run card punched in the following manner:

Columns Contents
6-14 AUTOCODER
16-18 RUN

3. An oprN card punched in the following manner:

Columns Contents
6-12 LISTING
16-19 OPTN
21-P AL, if all routines are to be listed, or
HEADER if all routine-names are to be listed, or
puncH if all routines are to be punched into
cards using a 1402 or 1442 Card-Read Punch, or
runcul444 if all routines are to be punched
into cards using a 1444 Card Punch, or
Blank if only specific routines are to be listed.
Note: When the output from a library listing job is a punch-

ed-card deck, a hard halt (halt 006) occurs at the com-
pletion of the job. Therefore, when used in a stack,con-
sisting of more than one job, a library punching job
should be the last job in the stack.

4. Routine-name cards punched in the tollowing man-
ner are required if specific routines are to be listed:

_(INITIALIZE OPTN
(' AUTOCODER RUN
LIBRARY ASGN

re—————— If required

Figure 20. Library Build

30 Autocoder (Disk) Operating Procedures

HEADER LDRCL

ALTER L LABEL - opP OPERANDS
0001 ### RETURN CONTROL TO DISK LOADER *k
0002 BOOL A,-¥#0L=-#05
0003 B 3701

ooou NOP

0005 MEND

0006 A BOOL As—#OL=#05
0007 B 7701

0008 NOP

0009 MEND

0010 A BOOL A,#OUx-#05
oon B 11701

0012 NOP

0013 MEND

0014 A B 15701

0015 NOP

0016 MEND

Figure 21. Library Listing

Columns Contents
16-20
The routine-name cards can be in any order.

5. An EnD card, punched in the following manner, is

always required:

Name of routine

Contents
END

Columns
16-18

Figure 22 shows the arrangement of the control
cards for a library listing of specific routines.

Library Change
Library routines, supplied by 1M or developed by the
user, can be added, modified, or deleted. Entries are
inserted and/or deleted in collating sequence.

1BM provides a change deck whenever mM-supplied
library routines (macros) should be modified. The
change deck includes an AuTOoCODER RUN card, a LI-
BRARY OPTN card, iNsER and/or DELET cards, an END
card, and cards containing the changes to be made.

The user’s change cards can be punched in the disk
Autocoder or tape Autocoder format. Library entries
in the tape Autocoder format must not contain any
000 notations. The tape Autocoder entries are auto-
matically converted to disk Autocoder format; all con-
dition codes become BooL statements. The library-
change operation cannot process input that contains

END

MG‘CTO naﬁs
/ LISTING OPTN
{ AUTOCODER RUN
LIBRARY ASGN

if required

Figure 22. Library Listing

a combination of tape Autocoder and disk Autocoder

entries.

For a description of the library statement formats
refer to Autocoder (on Disk) Language Specifications
for IBM 1401, 1440, and 1460, Form C24-3258, and
Autocoder (on Tape) Language Specifications and Op-
erating Procedures for IBM 1401 and 1460, Form
C24-3319.

In addition to the cards containing the changes, the
following control cards are required for a library
change.

1. A LiBRARY AsGN card which is required if the assign-
ment of the LiBrary file differs from that assumed
by the Autocoder System. See Library Build for the
format of the LIBRARY ASGN card.

2. A ruN card punched in the following manner:

Columns Contents
6-14 AUTOCODER
16-18 RUN

3. An optN card punched in the following manner:

Columns Contents
6-? LIBRARY or COMPAT
16-19 OPTN
21 1 (if the direct seek feature is available)

If the cards containing the changes are punched in
the disk Autocoder format, the LIBRARY OPTN card
is required. If the cards are punched in the tape
Autocoder format, the compaT oprNn card is re-
quired.

4. An 1nser card is required for each set of insertions.
The 1NsER card is punched in the following manner:

Columns Contents
6-P Name of the library routine (macro name) to be
inserted or modified
16-20 INSER
21-? Sequence number(s)

a. Insertion. Punch n; n is the number of the
statement after which the insertions are to
be made.

b. Substitution. Punch n,m; n and m are the
numbers of the first and last statements to be
replaced by the insertions. All statements be-
tween and including statement n and state-
ment m will be deleted, and the insertion will
be substituted. Insertions and deletions need
not be in a one-to-one correspondence.

c. Leave blank if an entire routine is to be in-
serted or modified. If an entire routine is to
be modified, the routine presently in the li-
brary will be automatically deleted before
the new routine is inserted.

5. A pELET card is required for deletion of a routine
or part of a routine. The pELET card is punched in
the following manner:

Columns Contents
6-? Name of library routine (macro name) to be
deleted or modified
16-20 DELET
21-? a. Leave blank if an entire routine is to be de-
leted.

b. If one statement is to be deleted, vunch the
number of the statement.

c. If more than one statement is to be deleted,
punch n,m; n and m are the numbers of the
first and last statements to be deleted. All
statements between and including statcment
n and statement m will be deleted.

6. An Enp card indicates the end of a library-change
operation. It is punched in the following manner:

Contents
END

Columns
16-18

Figure 23 shows the arrangement of the input cards.

Performing Jobs

Under control of the System Control Program, it is
possible to process one or more jobs without operator
intervention. For this stack processing to be accom-
plished, each separate job must be called for by the
necessary control cards. A list of the operations that
can be performed in a stack follows.

Logical File Assignments. Assign decks are made up of
one or more ASGN control cards specifying input/
output devices that differ from the effective devices
of the System Control Program. With the exception
of the systEM asoN card, logical-file aseN control
cards can appear as frequently within the stack as
the user wishes. Individual control cards within the
deck can be in any order. The systEM ascN card
appears once in a stack and immediately follows the
Card Boot deck. A corReLOAD AseN card is required
if THRU EXECUTION is specified in a run card or if a

[/ INSER

{ LIBRARY OPTN
/ AUTOCODER RUN

LIBRARY ASGN

|<¢—————— |f required

Figure 23. Library Change

31

CORELOAD OPTN card is included in the processor-job
deck.

Library Maintenance. The composition of a library
deck depends primarily upon the nature of the li-
brary job. However, an AUTOCODER RUN card is al-
ways required.

System Updating. Update decks as supplied by 18Mm
‘are read by the System Control Program and must
be available to the System on the device to which
the controL file is assigned. An update deck con-
sists of one or more control cards, followed by any
appropriate data cards.

Processor Runs. Runs depend upon a ruN card and the
input to the processors. If the wpur file is assigned
to the same device as the controL file (the card
reader), each source deck must be placed behind
its respective RUN control card. If the input to the
processors is written in disk storage, an INPUT ASGN
card is required designating the location of the
source material in disk storage.

Communicating with the Operator. NoTE control cards
and PAUSE control cards can appear anywhere in a
stack between, not within, jobs. A HALT card must
be the last card of a stack.

Preparing a Stack

The Card Boot deck, a systEM ASGN card, and a HALT

card are always required. The formats of the sysTEm

AsoN and HALT cards are shown in Appendix I.

The input cards for a stack are arranged in this order:

1. The 1402 or 1442 Card Boot deck.

2. The sysTEM AsGN card.

3. Job decks, to include the assign card(s), library
deck(s), update deck(s), and processor deck(s). Job
decks can be in any order.

4. The HALT card.

This stack is placed in the card reader and is read by

the Autocoder System.

Figure 24 shows a stack with conTROL and INPUT
files assigned to the same device.

Figure 25 shows a stack with conTROL and inpuT
files assigned to different devices..

Running a Stack

To perform a stack run when the System resides on

1311:

1. Place the System pack on the disk drive referred
to in the systeEm AseN control card, and ready the
drive. (This card immediately follows the 1402 or
1442 Card Boot deck.)

32 Autocoder (Disk) Operating Procedures

2. Ready all the input/output devices to which the
logical files are assigned. These are the assumed
devices of the System Control Program and/or the
devices defined by the aseN cards. The assumed
devices are: disk drive 0, the card reader, the card
punch, and the printer.

3. Ready the console:

a. Set the I/0 check-stop switch off.

b. Set the check-stop switch and disk-write switch
on.

c. Set the mode switch to RuN,

d. Press CHECK RESET and START RESET.

4. Load the program.

a. 1402 Card Reader: Press LOAD.

b. 1442 Card Reader: Press sTarT on the reader,
and PROGRAM LOAD on the console.

5. When the System attempts to read the last card:
a. 1402 Card Reader: Press START.
b. 1442 Card Reader: Press start on the card
reader.

To perform a stack run when the System resides on

1301:

1. Ready all the input/output devices to which the
logical files are assigned. These are the assumed de-
vices of the System Control Program and/or the
devices referred to in the asen cards. The assumed
devices are: disk unit 0, the card reader, the card
punch, and the printer.

2. Ready the console:

a. Set the I/0O check-stop switch off.

b. Set the check-stop switch and disk-write switch
on.

¢. Set the mode switch to RUN.

d. Press cHECK RESET and START RESET.

3. Load the program:

a. 1402 Card Reader: Press LOAD.

b. 1442 Card Reader: Press starT on the reader,
and PROGRAM LoAD on the console.

4. When the system attempts to read the last card:
a. 1402 Card Reader: Press sTART.
b. 1442 Card Reader: Press sTart on the card
reader.

Loading Object Programs

Punched-card object programs can be executed inde-

pendently of the Autocoder System. The procedures to

be followed when a card-read error occurs depend on

the format of the program and the object system.

To load the program:

1. Place the object deck in the card reader. (If for any
reason the user does not wish to clear storage before

“CTL (Optional)
(JOB (Optional)

AUTOCODER RUN
THRU OUTPUT

Object Deck
EXECUTION RUN

ASGN Cards (Opf.)
SYSTEM ASGN

Sl st

{ 1402

1442 } CARD BOOT

Source Deck

Figure 24. Stack with CONTROL and INPUT Files Assigned to the Same Device

4 HALT
(AUTOCODER RUN

THRU OUTPUT
{ INPUT ASGN
(LISTOPTN /
Job 3
(OUTPUT RUN
(INPUT ASGN
(EXECUTION RUN
(INPUT ASGN
(SYSTEM ASGN

1402
1442

Job 2

Zlob 1
‘ Card Boot —

Figure 25. Stack with CONTROL and INPUT Files Assigned to Diflerent Devices

loading the object program, he should remove the
first two cards from the deck. These are the clear-
storage cards generated by the processor.)

2. Set the I/0 check-stop switch on. Set sense switches
as needed by the object program.

3. Press CHECK RESET and START RESET.

4. Load the program:
a. 1402 Card Reader: Press LOAD.
b. 1442 Card Reader: Press STarT on the card

reader, and PROGRAM LOAD on the console.
5. When the system attempts to read the last card:
a. 1402 Card Reader: Press START.

b. 1442 Card Reader:
reader.

Press sTarT on the card

If a card-read error occurs while loading an object-
program deck with the I/0 check-stop switch on, the
following procedures are followed to correct the error.

If the reader is a 1402:

33

1. Non-process run-out the cards in the card reader.

2. Place the last three cards (two non-processed cards
and the card in error) in the hopper.

3. Press cHECK RESET on the reader and sTART.

If the reader is a 1442 and the object-program deck is
in the 1440 condensed-loader format:

1. Non-process run-out the cards in the card reader.
2. Place the last two cards in the hopper.

3. Press CHECK RESET and START RESET.
4

. Set the I-address register to the ninth position of
the loader.

5. Press START on the reader and sTarT on the console.

34 Autocoder (Disk) Operating Procedures

If the reader is a 1442 and the object-program deck
in the 1440 self-loading format:

Non-process run-out the cards in the card reader.
Place the last two cards in the hopper.

Press CHECK RESET and START RESET.

Set the I-address register to 00073.

Press sTaRT on the reader and sTART on the console.

e
17}

Uk W o

Halts and Messages

The halts and messages shown in Figure 26 can appear
during a stack run. To display halt numbers, press the
A-address register key. Messages are printed on the
MESSAGE file.

Halt Number

(A-Address
Register) MESSAGE and/or Meaning Restart Procedure
1bb Card read error. 1. 1402 card reader: non-process run—out the cards in the
reader. Place the last three cards (two non-processed
cards and the card in error) in the hopper. Press START.
2. 1442 card reader: non-process run-out the cards in the
reader. Place the two non-processed cards in the hopper,
(The first non-processed card is the card in error). Press
START on the reader and START on the console.
2bb Wrong-length record or no-address~compare error sensed Press START for ten disk-read or write retries.
ten times during a disk-read or write operation,
3bb Parity error sensed ten times during a disk-read or write Press START for ten disk-read or write retries.
operation,
4bb Not-ready condition sensed when a disk-read or write Ready the disk unit and press START.
operation was attempted.
5bb 1. Librarian-control OPTN card is incorrect, or 1. Non-process run-out the cards in the card reader,
2. Preprocessor phase not on the SYSTEM file. correct the OPTN card, and restart the system, or
2. If the OPTN card is not incorrect, use the part of the
system deck labeled AUTOCODER PREPROCESSOR and
rebuild the preprocessor portion of the system. Follow
the procedures as described in Building an Autocoder
System,
6bb One of the following messages precedes this halt: The contents of the error cards are printed, Non-process

ERROR HEADER ABOVE UNKNOWN

A phase update card specifies a phase name that is not in
the phase table .

ERROR NO KNOWN TYPE OF UPDAT
Columns 21= ? of a phase update card are incorrect.
ERROR CYLINDER OVERFLOW

The phase update card specifies that the phase is to be
placed on a set of sectors that exceeds one cylinder.

ERROR ACTUAL IDENT UNEQUAL TO HEADER IDENT

Columns 76-80 of a change card do not contain the phase
name specified in columns 6=10 of the update control
card associated with it.

ERROR NON CONTROL CARD WITHOUT CONTROL
PRECEDING

An update card is missing, out of sequence, or mis-
punched,

ERROR UNKNOWN EXECUTE CARD

A change card with 006 punched in columns 1-3 does not
have =, or =/ or =M punched in columns 6 and 7, These

punches are found in set-word-mark or clear cards developed
for a DA statement. No other types of special execute cards

are permitted.
ERROR PATCH ABOVE OUTSIDE OF PROGRAM LIMITS

The phase area cannot contain the data specified in the
change cards.

run-out the cards in the card reader, correct the error card,
and restart the update operation. Corrections successfully
completed before the halt occurs need not be reprocessed .

Figure 26. Halts and Messages (Part 1 of 5)

35

Halt Number

(A~Address
Register) MESSAGE and/or Meaning Restait Procedure
ERROR CHARACTER COUNT TOO LARGE
A change card contains o character count greater than 67
characters. The character count is punched in columns 4
and 5.
ERROR ABOVE CARD CREATES GROUP MARK WORD
MARK
A set-word-mark card developed for a DA statement
attempts to set a word mark over a position containing
a group mark, or a condensed card contains a word separa-
tor character followed by a group mark. This is an error
because a group mark with @ word mark can neither be read
from nor written in disk storage.
7bb More than 50 different DTF entries used in the program. Correct the source program and reassemble the source
program from the beginning.
8bb CONTROL CARD ERROR LIBRARY OPTN The contents of the incorrect card(s) are printed. Remove
the incorrect card(s) and place the remainder of the cards in
This halt indicates one of the following conditions: the card reader. If the library change operation is not
1. An INSER, DELET, or END card is missing or mis— completed, the LIBRARY file cannot be used.
punched.
2. An attempt to insert or delete entries in a [ibrary
routine that does not exist.
3. Entries not in collating sequence, according to
macro name and/or sequence number.
9bb Any disk error that occurs while the bootback routine is Press START for one disk retry .
returning control to the System Control Program.
10bb More than 300 macros within macros have been used in Correct the source program and reassemble the saurce pro-
the source program. gram from the beginning.
11bb WORKIT capacity exceeded during an AUTOCODER RUN Change the WORK1 or OUTPUT ASGN card and restart the
THRU OUTPUT or an AUTOCODER RUN THRU EXECU- assembly of the job.
TION, or OUTPUT-file capacity exceeded during an
AUTOCODER RUN.
12bb Disk-error condition sensed during the Preprocessor Press START for ten disk retries.
phase .
13bb LIBRARY file capacity exceeded. Part of the library To finish the job:
routine that was being processed when the halt occurred 1. 1402 card reader: nonprocess run out the cards in the
will be in the LIBRARY file. All library routines follow~ reader. Place the END card in the hopper. Press
ing the routine being processed will no longer be in the START.
LIBRARY file, 2. 1442 card reader: nonprocess run out the cards in the
reader, Place the END card in the hopper. Press
START on the reader and START on the console .
To determine the names of the routines remaining in the
LIBRARY file, perform a library=listing operation and specify
HEADERS in the LISTING OPTN card.
14bb Invalid card encountered during LIBRARY OPTN run. Press START to complete the run. The invalid card will be
bypassed. If the run is not completed, the LIBRARY file
cannot be used.
22bb More than 30 different INCLD routines used in one Correct the source program and reassemble the source program
overlay. from the beginning.
33bb Library table (92 macro names) exceeded. To finish the job:

1. 1402 card reader: nonprocess run out the cards in the
reader. Place the END card in the hopper. Press
START.

2. 1442 card reader: nonprocess run out the cards in the
reader. Place the END card in the hopper. Press
START on the reader and START on the conscle.

To determine the names of the routines in the LIBRARY file,

perform a library ~listing operation and specify HEADERS in

the LISTING OPTN card,

Figure 26. Halts and Messages (Part 2 of 5)

36 Autocoder (Disk) Operating Procedures

Halt Number

(A-Address
Register) MESSAGE and/or Meaning Restart Procedure
001 WRONG SYSTEM 1. Non-process run-out the cards in the reader.
2. Correct the SYSTEM ASGN card, or place the correct
The message appears unconditionally on the printer. pack on the unit indicated in the SYSTEM ASGN card.
3. Restart the stack.
002 TEN RD TRIES PRESS STRT FOR 10 MORE Press START for ten disk-read retries.
The message appears unconditionally on the printer. It
indicates any disk error while attempting to read the
SYSTEM file.
003 SYSTEM ASGN NOT SENSED 1. Non-process run-out the cards in the reader,
2. Place the SYSTEM ASGN card and the remainder of
The SYSTEM ASGN card did not immediately follow the the stack in the read hopper.
Card Boot. 3. If the reader is 1402, press START.
4., If the reader is 1442, press START on the reader and
START on the console .
004 Parity check, wrong-length record, or no-address~ Press START for 10 disk-read retries.
compare error sensed 10 successive ti nes during disk
bootstrap operation.
005 End-of-file sensed in SYSTEM file during disk boot- Non-process run~out the cards in the reader and restart the
strap operation. stack .
006 HALT card image Hard halt,
Indicates the end of the stack.

007 Card-punch error. 1. 1402 card punch and 1444 card punch: non-process
run-out the cards in the punch. Discard the last three
cards (two non=processed cards and the card in error)
in the stacker. Press START.

2. 1442 card punch: discard the last card in the stacker.
Press START on the punch and START on the console.

008 Card-read error. 1. 1402 card reader: non-process run-out the cards in the
reader. Place the last three cards (fwo non=processed
cards and the card in ervor) in the hopper. Press START.

2. 1442 card reader: non-process run-out the cards in the
reader. Place the two non=-processed cards in the
hopper. Press START on the reader and START on the
console,

009 Printer error. 1. 1403 printer: press START.

2. 1443 printer: press START on the printer and START on
the console.

010 Non=blank card at the punch station in the 1442 card Non-process run-out the cards in the 1442. Place blank

read-punch. cards before the non-processed cards. Press START on the

1442 and START on the console.

011 PAUSE card image . Press START.

012 Console-printer error Press START for one retry of the read or write operation.

013 *** ASGN card image 1. 1402 card reader: the card in the stacker is the in-

The halt indicates that the ASGN card is incorrecily
punched.

correct ASGN card. Correct the ASGN card. Non-
process run-out cards in the reader. Place the correc-
ted ASGN card and the two non-processed cards in
the hopper. Press START.

1442 card reader: non-process run-out the cards in the
reader. The first non-processed card is the incorrect
ASGN card. Correct the ASGN card. Place the
corrected ASGN card and the second non-processed
card in the hopper. Press START on the reader and
START on the console .

Figure 26. Halts and Messages (Part 3 of 5)

37

Halt Number

(A~Address
Register) MESSAGE and/or Meaning Restart Procedure
3. [f the user wishes, he can ignore the two steps outlined
above, and press START, The system will then use the
effective device assignment for that particular file.
040 The logical file has been assigned to an area that overlaps | Hard halt. Change the assignment and restart the stack with
a previously defined file label. (1311 only.) the Card Boot.
168 Phase not found in phase table while in supervisory call A part of the System must be rebuilt, Use the parts of the
for phase . System deck labeled CARD BUILD, SYSTEM CONTROL, and
AUTOCODER PROCESSOR. Follow the procedures as des—
cribed in Building an Autocoder System.
500 Disk not ready . Ready the disk unit and press START.
629 Parity check, wrong-length record, or no~address—-compare | Press START for 10 disk-read or write refries.
error sensed 10 successive times during a disk~read or write
operation.
777 This halt will occur if the work areas are not large enough. | Hard Halt. Enlarge work areas to required size and
restart the assembly.
1250 END OF CONTROL CARD DIAGNOSTICS NOTE — As indicated in the message .
PRESS START TO ASSEMBLE, START-RESET AND START
TO BYPASS ASSEMBLY
1447 NOTE — ASSEMBLY ERRORS — PRESS START TO EXE- As indicated in the messoge .
CUTE, START — RESET AND START TO BYPASS
EXECUTION
1833 NOTE — DIAGNOSTICS — PRESS START TO ASSEMBLE, As indicated in the message.
START — RESET AND START TO BYPASS ASSEMBLY
START ADDRESS OF INPUT FILE DOES NOT REFER TO If a message is printed and no halt occurs, the next control
HEADER RECORD card is processed.

EXPECTED HEADER # (52 positions) #, FOUND
/ (52 positions) /

EXPECTED ID #XXXXX#, FOUND /XXXXX/

NOTE card image

*** card image

All cards not recognized by the System Control Program
are flagged (***), written on the MESSAGE file, and
bypassed by the System.

Card image
INVALID UPDAT TYPE

Update card with invalid update mode designated.

PHASE XXX ALREADY ON SYSTEM. WILL DROP THIS
SET OF CARDS

PHASE XXX NOT FOUND

HEADER CARD ERROR

All header cards must have 24232 in columns 1 through
5.

Card image

PHASE AREA EXCEEDED

****pROCESSOR UNKNOWN** **
Figure 26. Halts and Messages (Part 4 of 5)

38 Autocoder (Disk) Operating Procedures

Halt Number
(A-Address
Register)

MESSAGE and/or Meaning

Restart Procedure

CORELOAD NOT ASSIGNED, OPTION NOT DONE

The next output option is processed.

CORELOAD FILE NOT ASSIGNED, OPTION NOT DONE
AND EXECUTION SUPPRESSED

Image of an ouiput option card = OPTION UNKNOWN

The next output option card is processed.

CORELOAD HEADER — (52 positions), ID — (5 positions)

Use the information in an EXECUTION RUN card.

CORELOAD OUTPUT COMPLETE ON “gé}% UNIT n,

START nnnnnn, END nnnnnn

The START address is address of the object program header
record. The END address is the address of the next avail-
sector. Use the information in an INPUT ASGN card for

an EXECUTION RUN.,

LST
STARTS 1311
{?{:LT} FILE iENDS % ON 3]3012 UNIT n AT

ADDRESS nnnnnn

XXXXX MACRO NOT IN LIBRARY

The macro requested (XXXXX) is not in the LIBRARY file.

END OF LISTING OPTN

The library-listing job has been completed.

XXXXX BLOCKS LEFT EOJ

The library—change operation has been completed.
XXXXX is the number of blocks available in the
LIBRARY file.

END OF SYSTEM OPTN

The update operation has been successfully completed.,

LIBRARY FILE NOT RECOGNIZED

The library has not been assigned correctly or the
library has not been initialized,

QUTPUT FILE NOT ASSIGNED TO DISK

The RUN card specifies AUTOCODER RUN. The Auto-
coder text must be written on disk.

INPUT FILE NOT ASSIGNED TO DISK

The RUN card specifies OUTPUT RUN or OQUTPUT RUN
THRU EXECUTION. An INPUT ASGN card, designating
the location of the Autocoder Text, is required.

NO TEXT IN INPUT FILE

1EOFb sensed in the INPUT file and the Autocoder Text
has not been processed; or, the assigned INPUT file does
not contain text.

Figure 26. Halts and Messages (Part & of 5)

39

Using and Maintaining the Object Program

Methods of Execution

An object program can be executed by using any of the
following methods:
1. Load-and-go
2. Delayed execution
a. Controlled
b. Independent.

Load-and-Go

Automatic loading and execution of an object program
is a processor job. The object program is written on
the coreLoab file, loaded into core storage, and control
is transferred to it. See Autocoder Run Thru Execution
and Output Run Thru Execution for the formats of the
required control cards.

Delayed Execution

Execution of an object program that has been pro-
duced by an AUTOCODER RUN THRU OUTPUT O an OUTPUT
ruN is called delayed execution. The object program
can be executed under control of the Autocoder System
or independently of the System.

Controlled Execution

Controlled execution is initiated by an EXECUTION RUN
card. See Delayed Execution under Preparing Proc-
essor Jobs for the formats of required control cards.

The advantages gained by executing programs under
control of the Autocoder System are:

1. Object programs, in the coreload format or punched
into cards, can be selected and executed.

2. More than one object program in the coreload for-
mat can be loaded from disk storage and executed
during an EXECUTION RUN. (See Multi-Program
Execution.)

3. Control can be returned to the System Control Pro-
gram after object-program execution. This feature
makes it possible to perform the next job without
operator intervention.

Processor Action

If the input is in the coreload format, the Execution

processor:

1. Determines if the start address of the ineur file
refers to a header record. If the record is not a
header record, a message is printed on the MESSAGE

40 Autocoder (Disk) Operating Procedures

file, and control reverts to the System Control Pro-
gram.

2. Compares columns 21-72 and 76-80 of the Execu-
TIoN RUN card, if punched, with the portion of the
header record that contains joB card information.
If the fields are not identical, a message is printed
on the MEssace file and control reverts to the System
Control Program. The message consists of the infor-
mation that is supposed to be in the record and the
information that is in the record.

3. Clears storage from the disk loader down to posi-
tion 1.

4. Transfers program control to the disk loader. After
the loading process has been completed, control is
transferred to the object program.

If the input is from cards, the object-program clear-
storage cards are bypassed and storage is cleared from
the bootstrap routine down to location 80. Control is
then transferred to the object-program bootstrap
routine.

If the loader has not been destroyed during a pro-
gram overlay, loading can be resumed by branching
to the disk loader (3701 for 4K, 7701 for 8K, 11701 for
12K, and 15701 for 16K). The inclusion of the LpRCL
macro in the source program provides the linkage.

Multi-Program Execution

More than one object program, in the coreload format,
can be loaded and executed during an EXECUTION RUN.
If the object programs are to be selected randomly, the
last two instructions in all object programs, except the
last object program to be executed, must be:

1. An instruction that moves the disk unit number and
the disk address of the next object program’s header
record into the core storage locations that contain
the address of the next sector to be read. (3825-
3831 for 4K, 7825-7831 for 8K, 11825-11831 for 12K,
and 15825-15831 for 16K.) Thus, the next object
program must have been assembled and transferred
to the coreLoap file before the instruction can be
coded. The message that is printed after an object
program has been transferred to the corerLoap file
gives the address of the object program’s header
record.

2. A branch to the disk loader. (3701 for 4K, 7701 for
8K, 11701 for 12K, and 15701 for 16K.) The inclu-
sion of the LDRCL macro instruction as the last in-

struction before the source program END statement
will provide the linkage to the disk loader.

If the object programs are batched on the coreLoab file
and are to be processed sequentially, only the branch
to the disk loader is required. Because the object pro-
grams are stored sequentially, the address of the next
object program’s header record is in the core storage
locations that contain the address of the next sector
to be read.

After executing an object program, the disk loader
does not clear core storage. The user should clear core
storage (if required) before calling the next object
program for execution.

Note: The disk loader, which begins at 3701 for 4K, 7701
for 8K, 11701 for 12K, and 15701 for 16K, must not be
destroyed during program execution. The loader itself requires
134 positions. The remaining high core-storage positions contain
the read-in area for the loader and the bootback routine.

Example: Assume that two object programs are to be
selected randomly during a single EXECUTION RUN
and that the object system size is 12K. The pro-
cedure would be:

1. Assemble the second object program to be executed
by performing an AUTOCODER RUN THRU OUTPUT
with the CORELOAD OPTN specified.

2. Record the message. Assume that the message is
CORELOAD OUTPUT COMPLETE ON 1811 UNIT 1, START
012300, END 012399,

3. Code the last three source statements in the first
program to be executed as shown in Figure 27.
Assume that the symbolic address of the first in-
struction to be executed is BEGIN, In a 12K machine,
positions 11825-11831 contain the address of the
next sector to be read. '

4. Assemble the first object program to be executed by
performing an AUTOCODER RUN THRU OUTPUT with
the CORELOAD OPTN specified.

5. Record the message. Assume that the message is
CORELOAD OUTPUT COMPLETE ON 1311 UNIT 1, START

004596, END 004960.

6. When the EXECUTION RUN is to be performed, use:
a. An ascN card that specifies INPUT ASGN 1311 UNIT
1, START 004596, END 004960, This aseN card assigns the
ivpuT file to the disk area that contains the first
object program to be executed. Because the second
program is not selected for loading by the Execution
processor, the area assigned to the inpur file need
not contain the second program.
b. An EXECUTION RUN card whose operand contains

OPERAND
43

Labal perati
!'__._____T_.__JJ| L] 25 30 35 49 50
L LC, 10.1 <, a1 1831 s a s
R LORCH | .,
]
L i Y

END_. |BERIA,

Figure 27. Coding for Multi-Program Execution

the information from the last joB card in the first
program to be executed.

Example. Assume that three object programs are to be
stored and executed sequentially. The procedure
would be:

1. Assemble the programs. Perform a series of auTo-
CODER RUN THRU OUTPUT jobs with the CORELOAD
or1N specified for each job. (The LprcL macro in-
struction must be the last instruction of the first two
source programs.)

[\

. Record the messages that are printed after the core-
load operations are completed.

3. When the EXECUTION RUN is to be performed, use:
a. An INPUT AsGN card that specifies the disk area
that contains the programs. The starT address must
be the address of the first object program’s header
record. Use the starT address from the first message
and the Enp address from the last message.

b. An ExEcuTiON RUN card whose operand contains
the joB card information from the last jos card in
the first program to be executed.

Return to System Control

If control is to be transferred to the System Control
Program after an object-program execution, the object
program must contain an instruction to branch to the
bootback routine (3928 for 4K, 7928 for 8K, 11928 for
12K, and 15928 for 16K). The inclusion of the syscL
macro in the source program provides the linkage.

Independent Execution

Any object-program deck produced by the Autocoder
System can be executed independently of the System.
The user need not prepare any additional cards to
initialize execution of the program.

Condensed-Loader Considerations

The factors to be considered when using the con-
densed-loader format are:

IBM 1440

Read-In Area. The read-in area is assumed to extend
from 0001 to 0074. A group-mark word-mark is lo-
cated in the last position of the read-in area.

The read-in area may be relocated by specifying
the starting address in the source program crvL card.
Since the loader uses a clear-storage command to
clear the read-in arca from the end address, the be-
ginning and ending addresses must have the same
hundreds position (Example: 00901-00974).

Loader Instruction Area. The loader instruction area
is assumed to be at 0075-0206 (132 characters). In
the special case where the card-input arca starts in

41

an address greater than 999 and the modify address
feature is not available, the loader instruction area
is extended to 145 characters.

The loader instruction area can be relocated by
specifying the starting address of the loader in the
source program crL card. The entry point to the
loader, after the execution of a program overlay, is
0083 for the assumed location and start address +8
positions for the relocated loader.

1BM 1401 or 1460

Read-In Area. The read-in area is fixed at location
0001-0080.

Loader Instruction Area. The loader instruction area
is assumed to be at 0081-0205 with a length of 125
characters. This area may be relocated by specifying
the starting address in the source program crvL card.
The entry point to the loader after the execution of
a program overlay is 0081 for the assumed location
and start address for the relocated loader.

Revising the Object Program

It is possible to correct or revise an object program
deck without reassembling. Either of two methods can
be used:

1. The user duplicates the condensed card, substituting
the correct information where needed. The corrected
card is then placed in the proper location within the
condensed deck before loading the object program.
To determine the proper location, check the pro-
gram listing. The sequence numbers punched in
columns 72-75 of the program deck correspond to
the sequence numbers in the program listing.

Lo

. The correct information is loaded into storage after
the original object program has been loaded, over-
laying part of the original object program. The user
punches patch card(s) and places them just before
the assembled Exp, xFR, or Ex card in the object
program or program segment to which the patch
applies. (Check the listing for number of the enp,
XFR, or EX assembled instruction.)

Condensed-Loader Format

A patch card for an object program in the condensed-
loader format is punched as follows:

42 Autocoder (Disk) Operating Procedures

Columns Contents

1-3 The threc-character machine address of the first
storage position to be loaded.

4-5 The number of characters to be loaded from the

card. Word-separator characters are not counted.

6-71 The instructions and/or constants to be loaded. A
word-separator character (0-5-8 punch) precedes
every character requiring a word mark in core

storage.

72-75 The source-program sequence number of the first
instruction or constant in the card.

76-80 The program identification.

Punching in columns 72-80 is not required for load-
ing. Thus, the card sequence number and the program
identification ficlds may be left blank. Note that if two
successive card columns both contain word-separator
characters, one word-separator character will be loaded
into core storage without a word mark.

Self-Loading Format
A patch card is punched in the following format:

Columns Contents

1-39 The constant(s) or machine-language instruction(s)
to be loaded into storage. The information must be
left-justified in this ficld.

A load instruction that loads the above data into
storage with a high-order word mark.

40-46

47-53 If the data should not have a high-order word mark,

this ficld contains a seven-character clear-word-

mark instruction. If the high-order word mark is

to be left in storage, this field contains:

1. A set-word-mark instruction. If two or more
instructions have been loaded into core storage,
a word mark must be set for each instruction, or:

2. A wNop instruction (N000000), if additional word
marks are not needed.

These ficlds contain set-word-mark or nop instruc-
tions (see preceding paragraph).

For the 1401-1460: 1040. An instruction to read a
card and branch to location 040, which is the ad-
dress of the next load instruction or an execute
instruction.

For the 1440: B0O73. An instruction to branch to
the read-a-card and branch instructions which are
in positions 73-85.

61-67
68-71

54-60 E

72-75 Program-listing sequence number of the first in-

struction and/or constant in the card.
76-80 Program identification.
Punching in columns 72-80 is not required for load-
ing. Thus, the sequence number and program identifi-
cation field may be left blank.

Building, Updating, and Copying an Autocoder System

Avutocoder-System Deck Description and
Preparation

The System deck supplied to the user contains six sec-
tions as shown in Figure 28. One section, Marking
Program, is used to separate the sections for ease in
labeling the various components of the complete deck.
Threc sections, Write File-Protected Addresses, Sys-
tem Control Card Build, and Autocoder Update are
used to build the System. A fifth section, the Card
Boot, is used to operate the System. A sixth section,
Sample Program, is used to test the System built by the
user. The individual sections are separated by the
Marking Program control cards. In the instances where
more than one set of cards makes up a section, a Mark-
ing Program control card separates the sets.

To facilitate building and maintenance operations,
mark the sections as indicated by the Marking Program
messages.

All cards in the System Deck, except the four 1402
load-card sets, the four 1442 load-card sets, the Auto-
coder macros, and the Autocoder Sample Programs,
contain a sequence number in columns 72-75. The
cards are numbered consecutively, beginning with
0001.

All load cards contain a sequence number in column
80. Each set of 1402 load cards is numbered consecu-
tively from 1 through 6 and is identified by a 0-4-8
punch (% symbol) in column 79. Each set of 1442
load cards is numbered consecutively from 1 through
7 and is identified by a 3-8 punch (# symbol) in
column 79.

Each Autocoder macro contains a sequence number
in columns 1-5, beginning with either 00000 or 00010.
Each Autocoder Sample Program contains a sequence
number in columns 1-5, beginning with 0001b.

If it is necessary to resequence the System deck, the
user should sort the cards in the following manner:

1. Sort on column 79 (0-4-8 punch) to select the 1402
load cards.

2. Sort the 1402 load cards on column 80 to sequence
the cards.

3. Assemble the four sets of 1402 load cards.

4. Sort on column 79 (3-8 punch) to select the 1442
load cards.

5. Sort the 1442 load cards on column 80 to sequence
the cards.

6. Assemble the four sets of 1442 load cards.

7. Sort the remainder of the System deck on columns
75, 74, 73, and 72. After sorting, the Autocoder
Macros and Sample Programs will be in the reject
pocket.

8. Check the program listing, which is supplied with
the System deck, and insert the sets of load cards
in the appropriate places.

9. Sort the Autocoder Macros and Sample Programs
on column 5. After sorting, the Sample Programs
will be in the reject pocket.

10. Scrt the Autocoder Macros on columns 4, 3, 2, 1,.
80, 79, 78, 77, and 76.

11. Check the program listing and insert the Auto-
coder Macros.

12. Sort the Sample Programs on columns 4, 3, 2, 1,
and 80.

13. Check the program listing and insert the Sample
Programs.

Marking Program

The Marking Program deck is made up of two sets. The
sct for the 1442 consists of 13 cards and has identifica-
tion code 50zyl punched in columns 76-80. The set for
the 1402 consists of 11 cards and has the identification
code 50zz1 punched in columns 76-80. A blank (except
for sequencing in columns 72-75) card follows each set,

The Marking Program separates the various sections
and sets that make up the System deck. When a control
card is sensed, a halt occurs and a message is printed.

If the reader is 1442, the initial message is:

HALT AT EACH DECK SEGMENT. DISCARD
FIRST CARD, MARK DECK AS PRINTED,
PRESS START TO CONTINUE,

If the reader is 1402, the initial message is:

HALT AT EACH DECK SEGMENT. MARK
DECK AS PRINTED, PRESS START TO CON-
TINUE.

Subsequent messages contain the name of the sec-
tion to be marked.

To use the decks:

1. Set sense switch A on. Set all other sense switches
off.

2. Set the 1/0 check stop switch off.

Press cuEck RESET and START RESET.,

Select the Program Marking deck that is appropriate

for the system and remove the other deck.

5. Remove the blank card following the Marking Pro-
gram and place the program in the card reader, fol-
lowed by the remainder of the Autocoder System
deck.

6. Load the program.

a, 1402 Card Reader: Press LoAD.
b. 1442 Card Reader: Press staRT on the reader, and
PROGRAM LOAD on the console.

o

43

SAMPLE

Blank Card

T 1402
— Blankii; MARKING PROGRAM
1442

Figure 28. Autocoder System Program Deck

7. Halt 003 procedure.
a. 1402 Card Reader: Press start. The Marking
Program is in the NR stacker.
b. 1442 Card Reader: Remove the Marking Program
from stacker 1 and press sTarT on the console.

8. Halt 001 procedure.

a. 1402 Card Reader: Remove the cards from
stacker 1 and press sTART. Mark the deck section as
indicated in the message. The Marking Program
control card is in the NR stacker.

b. 1442 Card Reader: Remove the cards from
stacker 1 and press sTarRT on the console. Discard
the first card (Marking Program control card) and
mark the section as indicated in the message.

Note: The Marking Program control cards are identified by
in columns 1-5. These cards are only for the
use of the Marking Program and should be discarded
after the deck is marked.

9. When the system attempts to read the last card.
a. 1402 Card Reader: Press START.
b. 1442 Card Reader: Press sTART on the reader. The

44 Autocoder (Disk) Operating Procedures

PRO GRAM
/ AUTOCODER
MACROS
AUTOCODER AUTOCODER
PREPROCESSOR UPDATE

AUTOCODER
PROCESSOR

L2 1402
_Z CARD BOOT
T~ 1442

SY STEM
CONTROL
PROGRAM

SYSTEM CONTROL
CARD BUILD

L1402
} WRITE FILE~PROTECTED ADDRESSES
L 1442

SHADED CARDS INDICATE CONTROL
CARDS FOR MARKING PROGRAM

last card is a Marking Program control card and

should be discarded.

The following halts can occur when using the Mark-
ing Program. To display the halt number, press the A-
address register key.

Halt Number
A-Address Register Meaning
001 The deck section in stacker 1 should be
marked.
002 End of job.
003 The initial message has been printed.
008 Card-read error. To retry the operation,
For the 1402: Non-process run-out the
cards. Remove the last three cards in the
stacker and place them in the hopper.
Press START.
For the 1442: Non-process run-out the
cards. Place the two non-processed cards
in the read hopper. Press sTART on the
reader and START on the console.
009 Printer error. To retry the operation,

a. 1403 Printer: Press START.
b. 1443 Printer: Press sTART on the
printer and START on the console.

Write File-Protected Addresses

The Write File-Protected Addresses section is punched
in the Autocoder condenscd-loader format. The deck
consists of approximately 120 cards.

The sct of cards for the 1442 has the identification
code sorst punched in columns 76-80. The set of cards
for the 1402 has the identification code sorr1 punched
in columns 76-80.

This section writes disk addresses whose values are
equal to the normal addresses plus 260,000. It is by use
of these false addresses that the file-protected arca is
created.

System Control Card Build

This section contains control cards and cards punched
in the Autocoder condensed-loader format. It includes
both the 1402 and the 1442 Card Build programs and
the System Control Program. All necessary control
cards are incorporated within the section, which con-
sists of approximately 1000 cards.

The Card Build set for the 1442 has the identification
code 50x41 punched in columns 76-80. The Card Build
set for the 1402 has the identification code s0x01
punched in columns 76-80.

The System Control Program section is identified by
the code sosx1 punched in columns 76-80, where x is
alphameric. The section loads the System Control Pro-
gram in disk storage.

Card Boot

The 1402 Card Boot set, consisting of 17 cards, and the
1442 Card Boot sct, consisting of 19 cards, are punched
in the Autocoder condensed-loader format. The 1442
Card Boot set has the identification code s0sz1 punched
in columns 76-80. The 1402 Card Boot set has the iden-
tification code s0pz1 punched in columns 76-80.

Because the Card Boot is required for cach stack of
jobs to be performed by the System, the Card Boot
must be removed and saved for future System opera-
tions.

Autocoder Update

The Autocoder Update section is made up of three sets
of cards: Autocoder Processor, Autocoder Preprocessor,
and Autocoder Macros. There are approximately 2900
cards in the entire section. The Autocoder Processor
sctis in the Autocoder condensed loader and the urpat
card formats. There are approximately 1400 cards in
the Autocoder Processor set. Approximately 800 cards
arc identified by the code avxxa punched in columns
76-80. Approximately 500 cards are identified by orxox
in columns 76-80. Approximately 100 cards are identi-
fied by exxxx punched in columns 76-80. In each case,
x is alphameric.

The Autocoder Preprocessor set contains the fixed
phases that are not under the direct control of the Sys-
tem Control Program. These phases reside outside the
file-protected area of the Autocoder System. An avro-
copeR RUN card precedes the set and contains blanks in
columns 76-80. The sct contains approximately 750
cards, each of which is identified by an alphameric
phase name in columns 76-80. (Sce Appendix 11 for a
list of Autocoder Preprocessor phase names and func-
tions.) .

The Autocoder Macro set is punched in the Auto-
coder library format. All required control cards are in-
corporated within the set. An ATTOCODER RUN card and
a LiBrARY OPTN card precede the set. Each of these two
cards contains blanks in columns 76-80. The sct con-
tains approximately 750 cards, cach of which is identi-
fied by a macro name in columns 76-80.

The macros included in this set are caLr, ara (modify
address), Loor, coMrr (compare), LPRCL and SyscL
(linkage), app, sus, MLTPY, and prvip.

Note: The cnaiNn and 1NcLp macros are incorporated in the
Autocoder Preprocessor.

Sample Program
The Sample Program section is punched in the Auto-
coder source language and contains approximately 100
cards.

The 1442 set has the identification code srido
punched in columns 76-80. The 1402 set has the identi-
fication code spro1 punched in columns 76-80.

Building an Autocoder System

After all sets of cards have been labeled and those sets
of cards not applicable to the user’s system have been
removed, the user is ready to use the prepared System
deck to build the Autocoder System.

Figure 29 is a block diagram showing the building
of a disk-resident System.

The System unit must be prepared for writing the
complete System from cards. The user must clear disk
unit 0 in the move mode from 000000 to 000199, in the
load mode from 000200 to 000259, in the move mode
from 000260 to 000299, in the load mode from 000300
to 004799, and in the move mode from 004800 to
019979. The Clear Disk Storage program applicable to
the user’s system can be used for this operation.

Figure 30 shows the disk storage allocation on the
System unit.

The control cards for the utility program must be
punched in the following manner;

FFor 1311,
Columns Contents
1-15 MO00000000019900
21-35 1.00020000025900
41-55 M00026000029900

45

Clear Disk

Determine
Unit for File
Protected
Addresses

1301 131
[J
|
Write
File - Protected
Addresses

Determine
Disk Residence
Unit

1301 1311
L |
System Control
Card Build
Prepare

Autocoder

Update Decks

|

Update
System

l

Run Sample
Program

Figure 29. Building the System

Columns Contents

1-15 L.00030000479900
21-35 M00480001997900
For 1301,

The format of the control cards is the same as that
given for 1311 except columns 14-15, 34-35, and 54-55
must contain record marks (0-2-8 punch) instcad of
Z€108.

46 Autocoder (Disk) Operating Procedures

FILE MODE :-cl:';cted Sector Range
SYSTEM File
Preprocessor Move No 000000-000199*
Load No 000200-000259
Move No 000260-000299
Load No 000300-002499
System Control
and Processors Load Yes 002500-004799
WORK1 File Move No 004800-011199
WORK2 File Move No 011200-012399
WORKS3 File Move No 012400-012899
LIBRARY File Move No 012900-019979

Figure 30. Disk Storage Allocation

Write File-Protected Addresses

The last card in the section labeled WRITE FILE PROTECT
is a control card that is partially prepunched. It is by
the use of this control card that the limits of the file-
protected area in the disk-storage unit are supplied.
The user must indicate in the control card whether the
System is to reside on a 1301 or 1311 disk unit. For both
the 1301 and 1311, the System must be built on drive
unit 0. In the case of the 1311, the System pack can be
used on any drive once the System has been built. The
control card is punched as follows:

Columns Contents
1-15 FILE-PROTECT ON (prepunched)
17-20 1301 or 1311
22 0 (prepunched)
24-42 FROM NORMAL ADDRESS (prepunched)
44-49 002500 (prepunched)
51-52 TO (prepunched)
54-59 004800 (prepunched)

After columns 17-20 have been punched by the user,
the card must be replaced as the last card of the
section,

To use the section when the System is to reside on
1311:
1. Ready the pack on disk drive 0.
Sct the write-address mode switch on.

1o

Set the write-disk switch on.
Set the 1/0 check stop switch on.
Press CIIECK RESET and START RESET.

& Gk

Place the Write File-Protected Addresses section in
the card reader.

7. Load the program.
a. 1402 Card Reader: Press LoAD.
b. 1442 Card Reader: Press start on the reader, and
PROGRAM LOAD on the console.

8. When the system attempts to read the last card,
a. 1402 Card Reader: Press START.
b. 1442 Card Reader: Press sTART on the reader.

9. At the end of the job, set the write-address mode
switch off.

To use the deck when the system is to reside on 1301:
Set the write-address mode switch on.
. Set the write-disk switch on.
Set the I/0 check stop switch on.
Press CHECK RESET and START RESET.
. Place the Write File-Protected Addresses section in
the card reader.
6. Load the program.
a. 1402 Card Reader: Press LOAD.
b. 1442 Card Reader: Press sTarT on the reader, and
PROGRAM LOAD on the console.
7. When the system attempts to read the last card,
a. 1402 Card Reader: Press START.
b. 1442 Card Reader: Press sTART on the reader.
8. At the end of the job, set the write-address mode
switch off.

ULk @ o

The following halts can occur when writing file-
protected addresses.

Halt Number
(A-Address Register) Meaning
020 Last card condition was sensed before

the control card. The control card con-
taining the initial and terminal addresses
of the area to be file-protected must be
the last card of the deck. When the sys-
tem is restarted by pressing START, a
read operation is performed.

021 An invalid disk type is specified in the
control card. 1301 or 1311 are the only
valid entries for columns 17-20 of the
control card. When the system is re-
started by pressing sTART, a read opera-
tion is performed.

022 An invalid disk unit is specified in the
control card. The only valid entry for
column 22 of the control card is 0.
When the system is restarted by pressing
START, a read operation is performed.

023 An invalid start address (columns 44-49)
is specified in the control card. The start
address must be,002500. When the sys-
tem is restarted by pressing sTART, a
read operation is performed.

024 An invalid end address (columns 54-59)
is specified in the control card. The end
address must be 004800. When the sys-
tem is restarted by pressing START, a
read operation is performed.

Halt Number
A-Address Register Meaning
025 Disk unit 0 is not ready. When the sys-

tem is restarted by pressing sTArT, the
disk I/0 operation is retried.

026 The area specified in the control card is
already file-protected (all or in part). If
the system is restarted by pressing sTARr,
the entire specified area will be file-pro-
tected and cleared.

027 The area specified in the control card
has neither the “normal” disk addresses
(000000-P) nor file-protected addresses.
This is a hard halt.

028 Parity check or wrong-length record
error occurred on the disk unit while
writing addresses. When the system is
restarted by pressing stamrt, the disk
I/0 operation is retried.

029 Parity check or wrong-length record
error occurred on the disk unit while
determining the existing addressing
scheme. This is a hard halt.

030 End of the job.

System Control Card Build

The last card in the section labeled carp BuILD is a con-
trol card that is partially prepunched. It is by the use
of this control card that disk residence is determined.

The user must indicate in the control card whether
the System is to reside on a 1301 or 1311 disk unit. The
assumed disk unit number is 0.

The control card is punched as follows:

Columns Contents

6-11 SYSTEM (prepunched)
16-20 BUILD (prepunched)
21-24 1301 or 1311

After columns 21-24 have been punched by the user,
the card must be replaced as the last card of the carp
BuiLp deck.
The System Control Card Build consists of the card
sections labeled carp BurLp and sySTEM CONTROL.
To use the System Control Card Build when the sys-
tem is to reside on 1311:
. Ready the pack on disk drive 0.
. Set the write-address mode switch off.
. Set the write-disk switch on.
Set the 1/0 check stop switch off.
Press CHECK RESET and START RESET.
. Place the System Control Card Build section in the
card reader.
7. Load the program.
a. 1402 Card Reader: Press LoAD.
b. 1442 Card Reader: Press sTART on the reader, and
PROGRAM LOAD on the console.

S UL W

47

8. When the system attempts to read the last card,
a. 1402 Card Reader: Press START.
b. 1442 Card Reader: Press sTART on the reader.
To use the System Control Card Build when the Sys-
tem is to reside on 1301:
. Set the write-disk switch on.
. Set write-address mode switch off.
. Set the I/0 check stop switch off.
Press CHECK RESET and START RESET.
Place the System Control Card Build section in the
card reader.
. Load the program.
a. 1402 Card Reader: Press LOAD.
b. 1442 Card Reader: Press sTART on the reader, and
PROGRAM LOAD on the console.
7. When the system attempts to read the last card,
a. 1402 Card Reader: Press START.
b. 1442 Card Reader: Press sTART on the reader.
The following halts can occur while using the System
Control Card Build deck.

YU 00O

o

Halt Number
(A-Address Register)

008 Card-read error: To retry the operation,

For the 1442: Non-process run-out the
cards. Place the two non-processed cards
in the read hopper. Press sTART on the
reader and sTART on the console.
For the 1402: Non-process run-out the
cards. Remove the last three cards in
the stacker and place them in the hopper.
Press START.

Meaning

050 The systeM BuiLD control card is miss-
ing from the deck or the user entry is
incorrectly punched.

051 End of job.

549 Disk unit 0 is not ready. When the sys-
tem is restarted by pressing sTART, the
disk 170 operation is retried.

554 A disk-write error occurred ten times.
When the system is restarted by press-
ing starT, the disk I/O operation is re-
tried.

Avtocoder Update

To build the Autocoder Assembler, the Autocoder Up-
date Section, made up of the sets of cards labeled
AUTOCODER PROCESSOR, AUTOCODER PREPROCESSOR, and
AUTOCODER Macros are used. (This section, labeled
AUTOCODER PROCESSOR, contains the Autocoder, Output,
and Execution processors.)

Note: If it is necessary to rebuild the Preprocessor, the user
can avoid destroying the LiBrary file that is within the limits
assumed by the Autocoder System. To do this, place a dummy
LIBRARY ASGN card ahead of the aurocoper ruN card which is
the first card in the AUTOCODER PREPROCESSOR scction. This dummy
ascN card should specify a disk area whose contents need not be
saved. For example, the area that is allotted to worxl could be
specified.

48 Autocoder (Disk) Operating Procedures

Input for this building process is as follows:

1. The 1402 or 1442 Card Boot followed by

2. The systeEM AsoN card, which must be punched by
the user, followed by

3. The Autocoder Update Section followed by

4. The HaLT card, which must be punched by the user.

To build the System when it is to reside on 1311:
Ready the pack on disk drive 0.
Set the 1/0 check-stop switch off.
Set the check-stop switch and disk-write switch on.
Set the mode switch to rRUN.
Press CHECK RESET and START RESET.
Load the program.
a. 1402 Card Reader: Press LoAD.
b. 1442 Card Reader: Press sTART on the reader, and
PROGRAM LOAD on the console.
7. When the system attempts to read the last card,
a. 1402 Card Reader: Press START.
b. 1442 Card Reader: Press sTART on the reader.

R o

To build the system when it is to reside on 1301:
Set the I/0 check-stop switch off.
Set the check-stop switch and disk-write switch on.
. Set the mode switch to RUN.
Press CHECK RESET and START RESET.
Load the program.
a. 1402 Card Reader: Press 1.0AD.
b. 1442 Card Reader: Press sTART on the reader, and
PROGRAM LOAD on the console.
6. When the system attempts to read the last card,
a. 1402 Card Reader: Press START.
b. 1442 Card Reader: Press sTART on the reader.
The halts that can occur when using the Autocoder
Update deck are shown in Figure 26.

YUk @ o

Sample Program

The Sample Program, which is used to test the effec-
tiveness of the system built by the user, calculates and
lists a table of salaries. A listing of the Sample Program
is shown in Appendix III.

The first card in the sample program is a partially
prepunched control card used for assigning the core-
LoAD file.

The user must indicate in the control card whether
the system resides on a 1301 or 1311 disk unit. The con-
trol card is punched as follows:

Columns Contents
6-13 CORELOAD (prepunched)
16-19 ASGN (prepunched)
21-24 1301 or 1311
26-57 UNIT 0, START 012300, END 012399 (pre-

punched)

To prepare and run the Sample Program, see Preparing
a Stack and Running a Stack. Figure 31 shows the sam-
ple program job deck.

Supplied
. by the user
Source Statements
/ CTL
/ JOB
r AUTOCODER RUN Job 1 - SAMPLE
THRU EXECUTION PROGRAM

[CORELOAD ASGN
SYST

[4———Partially prepunched

Card Boot r+————Supplied by the user

Supplied in Program Deck

Figure 31. Sample Program

Updating an Autocoder System

The Autocoder System is updated by the use of pre-
punched card decks supplied by M. All necessary
control cards and data cards are included in the deck.

An update job is performed as described in Prepar-
ing a Stack and Running a Stack.

Copying an Autocoder System

The Autocoder System can be copied by the Copy
Disk utility program using the information provided
in this section if: (1) the Autocoder System resides
on 1311 disk storage; (2) the LiBrRaRY and work file
assignments are the same as was initially assumed by
the System Control Program (see Figure 32); and (3)
the system pack to be copied does not contain the
coBoL or Fortran System in addition to the Autocoder
System.

The procedure for copying the Autocoder System
is as follows:

1. Mount the Autocoder System disk pack on (1311)
unit 0. Mount a disk pack on (1311) unit 1. (The
pack on unit 1 will contain the copy of the Auto-
coder System.)

2. Using the Clear Disk utility program, clear the
following areas of the pack on unit 1. (The mode
of operation, the drive number being used, and
the drive to which addresses are referenced arc
also given to aid in punching the arca-control
cards needed by the Clear Disk program).

Drive Drive
Mode Lower Limit Upper Limit Used Referenced
M 000000 000199 2 0
L 000200 000259 2 0
M 000260 000299 2 0
L 000300 004799 2 0
M 004800 019979 2 0

3. Using the Copy Disk Utility program, copy the
following areas from the pack on unit 0 to the
pack on unit 1. (The mode of operation, the num-
ber of the drive from which the Autocoder Sys-
tem is written, the number of the drive to which
the System is copied, and the drive to which the
addresses are referenced are also given to aid in
punching the area-control cards needed by the
Copy Disk program.)

) Lower Upper Drive Drive Drive
Mode Limit Limit From To Referenced
L 000200 000259 0 2 0
M 000260 000299 0 2 0
L 000300 002499 0 2 0
L 262500 264799 0 2 0
M 012900 019979 0 2 0

The program specifiications and the operating pro-
cedures for the Clear Disk and Copy Disk utility pro-
grams are given in the following publications:

L. Disk Utility Programs Specifications, mm 1401,
1440, 1460 (with 1301 and 1311), Form C24-1484.

2. Disk Utility Programs Operating Procedures, 1M
1401 and 1460 (with 1301 and 1311),
Form C24-3105.

3. Disk Utility Programs Operating Procedures, v
1440-1311, 18m 1440-1301, Form C24-3121.

49

Appendix |

This section contains a summary of the formats of all Figure 34 shows the formats of the following control
control cards that are required for System operations. cards:
Each control card is punched in the Autocoder format Halt (ravLt) card
(the label field is in columns 6-15, the operation field is Init (mN1T) card
in columns 16-20, and the operand field is in columns Librarian-control cards
21-72). Note (NvoTE) card
The user is again reminded that in columns 21-72, Output option (opPTN) cards
blanks must appear as indicated in the individual Pause (PAUSE) card
formats. Run (ruN) cards.

Figure 32 shows the formats of ascn cards and the
assumed assignments for the logical files. Figure 33 Note: Update cards are prepunched and included in the card

shows the valid device entries for the ascN cards. decks supplied by 1BM for updating the user’s System.
ASGN Card Format Assumed Assignment Remarks
Label Field Operation Field Operand Field
(Columns 6-15) | (Columns 16-20) (Columns 21-72)
SYSTEM ASGN 1311 UNIT n 1311 unit == user-assigned The SYSTEM ASGN card Is the
1301 UNIT G 1301 unit == must be assigned fo only required ASGN card, It
| uNITO must follow the Card Boot in a

stack of jobs. Any other SYSTEM
ASGN cards in the stack are
invalid.

If the user desires that the Auto-
coder System use less than the num-
ber of core-storage positions avail
able in the processor machine,
punch a comma in column 32 and
4K, 8K, 12K, or 16K beginning
in column 34,

CONTROL ASGN READER n READER 1
CONSOLE PRINTER

MESSAGE ASGN PRINTER n % PRINTER 2 When the MESSAGE file is
CONSOLE PRINTER assigned to the CONSOLE
PRINTER, carriage control
characters used with the
1403 or 1443 printer may
appear in the messags .

LIsT . ASGN PRINTER n PRINTER 2 If the LIST file is assigned to
1311 UNIT n, START nnnnnn, END nnnnnn PRINTER 1 (1403), the Output
1301 UNIT n, START nnonnn, END nnnonn processor develops a 100~
OMIT character program listing,
INPUT ASGN READER n READER 1
1311 UNIT n, START pnnnnn, END nnnnnn
1301 UNIT n, START nnnnnn, END annnnn
QUTPUT ASGN PUNCH n
1311 UNIT n, START nonnnn, END nnnnnn s PUNCH 4 (1401 and 1440)
1301 UNIT n, START gnnnnn, END nnnnnn §| PUNCH 1 (1440)
OMIT
LIBRARY ASGN 1311 UNIT n, START nnnnnn, END anpann 130]; 1311 Is assumed if the
)1301 UNIT n, START nonnnn, END npnnnn ilan UNIT 0, START 012900, END 19980 | sysTeM file is assigned to
1311; 1301 is assumed If the
WORK]1 ASGN 1311 UNIT n, START nnnnnn, END nnnnnn (111311 SYSTEM file is assigned to
’laol UNIT &, START nonnnn, END nnnnnnE)1301 UNIT 0, START 004800, END 011200 | 1501,
1311 UNIT a, START nnnnnn, -END prnnng ((§1311
WORK2 ASGN 1301 UNIT n, START nonnnn, END pangon| ;lGOI‘UNIT 0, START 011200, END 012400
WORK3 ASGN 1311 UNIT n, START nnnnnn, END nnnnnn {|}1311
1301 UNIT , START nnnnnn, END nnnann § {11301 {UNIT 0, START 012400, END 012900
CORELOAD ASGN 1311 UNIT n, START nnnnnn, END nnnnnn) | OMIT
1301 UNIT n, START nnnnnn, END nnnnnn
OMIT

NOTE: If the user's system contains Autocoder and COBOL, the WORK 1 assumed assignment
is changed from START 004800, END 011200 to START 007200, END 010400, The
assumed assignments for WORK2 and WORK3 remain the same .

Figure 32. ASGN Card Formats and Assumed Assignments

50 Autocoder (Disk) Operating Procedures

Device Entry and Values of n and nnnnnn

Remarks

“ggzUNﬂﬂ,ﬂAﬂnmmmnENngmm

n is the number of the disk unit, and can be
0, 1, 2, 3, or 4; nnnnnn is a disk address.

The END address is the acdress of the next available sector.

The values of nnnnnn must adhere to the following rules:

1. WORKI file. If the disk unit is 1311, the START address must be a
myltiple of 200, If the disk unit is 1301, the START address must be a
multiple of 800. The END oddress (1311 and 1301) must be a multiple
of 40.

2. WORK2 and WORKS3 files, The START address (1311 and 1301) of each
file must be a multiple of 100. (A START address that is a multiple of
200 results in the fastest assembly.) The END address (1311 and 1301)
of each file must be a multiple of 10.

3. LIBRARY file. The START and END addresses (1311 and 1301) must be
multiples of 20.

4. OUTPUT file. It is not necessary to specify that this file start or end at
any particular multiple. However, Autocoder will only use the file if
it begins at a multiple of 40.

In each of the first three cases, if the rules are violated, the system auto-
matically narrows in the disk area to an area that does adhere to the rules.
Incorrect addresses are not automatically corrected for the OUTPUT file.

READER n
For 1402, ncanbe 0, 1, or 2,

For 1442, n can be 1 or 2.

For 1402, n represents the pocket into which the cards are stacked.

For 1442 and 1444, n represents the number of the unit.

PUNCH n
For 1402, n can be 0, 4, or 8.
For 1442, n can be 1 or 2

For 1444, n must be 3.

PRINTER n

ncanbe 1 or 2

n represents the number of print positions available on the 1403 or 1443,
For 1403, a 1 indicates 100 positions and a 2 indicates 132 positions.
For 1443, a 1 indicates 120 positions and a 2 indicates 144* positions.

* Only 132 print positions are used by the Autocoder System.,

CONSOLE PRINTER

The console printer for the control file must be an IBM 1447 without a
buffer feature or an IBM 1407. An IBM 1447 with a buffer feature can be
used for the message file, although the buffer feature is not used.

OMIT

Select this option when the file is not to be used by the Autocoder System.
LIST, OUTPUT, and CORELOAD are the only files that can be omitted.

Figure 33. Valid Device Entries

51

Name of Card

Labe! Field
(Columns 6-15)

Operation Field
(Columns 16-20)

Operand Field
(Columns 21-72)

Macro name

Halt HALT Any message and/or identification
Init INIT Any message and/or identification
Library Control INITIALIZE OPTN Blank

LIBRARY OPTN 1 (for direct seek), or blank

COMPAT OPTN 1 (for direct seek), or blank

LISTING OPTN ALL

LISTING OPTN HEADER

LISTING OPTN Blank

LISTING OPTN PUNCH

LISTING OPTN PUNCH1444

(Used if columns 21-72 of the LIST-
ING OPTN card are blank)

Macro name INSER n (insertion)
m, n (substitution)
Blank (insertion of entire routine)
Macro name DELET n (deletion of one statement)
m, n (deletion of two or more statements)
Blank (deletion of entire routine)
END
Note NOTE Any message an/or instruction
Output Option LIST OPTN nn (nn is the number of lines per page)
PUNCH OPTN x (x is S for self-loading format) and
blank for condensed-loader format)
RESEQ OPTN
CORELOAD OPTN
Pause PAUSE Any message and/or instruction
Run AUTOCODER RUN
AUTOCODER RUN THRU OQUTPUT
AUTOCODER RUN THRU EXECUTION
OUTPUT RUN
OUTPUT RUN THRU EXECUTION
EXECUTION RUN Note: Information in addition to any

of the above entries should not be used.

Figure 34. Control Card Formats

52 Autocoder (Disk) Operating Procedures

The name, identification, and function of each phase
in the Autocoder System are given in the following
sections.

System Control Program

This section describes the phases that make up the
System Control Program.

Name ID Function
Card Build 50X41 Builds System Control on 1311
(1442) or 1301.
50X01
(1402)
Card Boot 50S7Z1 Read the systEMm asen card and
(1442) reads in the System Boot from
50PZ1 the specified disk unit.
(1402)

50801 1. Determines machine size.

2. Initializes switches according
to the type of reader, punch,
and printer (serial or parallel).

3. Reads in the I/0 package.

4. Calls the determiner.

System Boot

File-Hardware = 50S11 Contains the assumed assignments

Table for the logical files.

Input/Output 50821 1. Reads or writes disk in the

Package move or load mode. The mode
depends on the processor
operation.

2. Determines whether the user
has exceeded specified
file limits.

3. Branches to the processor
phase, or branches to the
end-of-file routine if the
end-of-file has been sensed.

Super 0 50831 Reads in the spccified phase
Super 1 50541 from disk storage and branches
Super 2 50851 to the specified phase.
Super 3 50861
Super 4 50871
Super 5 50881
Super 6 50591
Initializes the specified area with
a twenty-character control word.
Open 1 50SA1 % This control word is obtained
Open 2 50SB1 from the temporary file-hardware
table.
Determiner 50SC1 Reads the conTroL file until a

control card (HALT, PAUSE, NOTE,
UPDAT, RUN, Or ASGN) is sensed.
When a control card is sensed,
the determiner causes a halt

or pauses, prints out a note, calls
the update determiner, calls

Appendix Il

Name ID Function

the selector, or calls the con-
figurator, depending upon the
type of card.

Phase Index 50SD1 Contains the locations of the

Table phases in the System.

Configurator 50SE1 Updates the temporary
file-hardware table as specified
by the ase~ card(s.)

Selector 50SF1 Initializes the files used by the
processor being called, and
calls the first phase of that
processor.

Update 508G1 Determines the type of update

Determiner operation being performed, and
calls in that particular updater.

Update Insert 50SH1 Places a new phase on the
systeM file in any available
location,

Update Header 50SI1 Updates the header of a phase
that is in the systeM file, as
specified by a header card.

Update Delete 50S]J1 Deletes a phase from the
syYsTEM file.

Update Patch 50SK1 Patches a part of a phase on
the systeM file.

Dump 1 50SL1 Prints storage on the visT file.

Dump 2 50SM1

File Print 1 50SN1 Prints all work files on the
LisT file.

File Print 2 50801

File Print 3 50SP1

Note: The Dump and File Print phases are used only if the
systeM file contains the cosor compiler.

Preprocessor and Autocoder Processor

This section describes the phases that make up the Pre-
processor and the Autocoder processor.

In the discussion of the Autocoder processor phases
(initialize, mnemonic, conditioner, diagnostic, literal,
label-entry, symbol-lookup, and pre-output), text refers
to a series of 100-character records, each of which con-
tains an 80-character source portion and a 20-character
object portion. Source program and gencrated state-
ments are written in the source portion by the Preproc-
essor; machine language instructions are built in the
object portion by the Autocoder processor.

53

Name ID
Initialize AUIAA
Build AU1BA
Linkage DI000
Pre-phase DIOCS
Pre-phase DTF
Pre-phase GT-PT
Pre-phase GENPP
Option RUNCL
Control

1.

4.

Function Name ID

Opens all files used by the
Preprocessor, and saves the
addresses of disk files.

. Saves all constants that have

to be returned to System
control.

. Calls AU1BA if it is needed.
. Check the output and

Between-phase MNTOR

LIBRARY file assignments. Monitor

. Calculates the number of

blocks available in the
LIBRARY file.

. Calls option-control (RUNCL).
. Loads the phase table,

dummy library, option-control
phase (RUNCL), monitor
phase (MNTOR), and update
phase (UPDAT) into the
sysTEM file.

The phase table contains
the entry for the update
phase and a trailor flag
which indicates the end
of the table.

The dummy library
(DUMLB) creates the LIBRARY
file. It builds the library
table and a record that
specifies the end-of-library
name (99999). The end-of-
library name and its disk
address are written in the
library table.

. Calls in RUNCL when an

Autocoder option card is
encountered.

. Reads in the System Control

Program.

. Inserts saved constants.
. Puts a $ in location 3999

Update SYSTE

if a macro generation has
been completed.

Calls the selector phase of
the System Control Program.

Sets up parameters for piocs
entries.

Sets up parameters for DTF
entries.

Sets up parameters for GET
and PUT phases.

Sets temporary switches for
DIOCS, DTF, GT-PT, FILEORG,
and SORT parameters.

1.

Clears storage (except the
storage positions containing
RUNCL).

. Reads the first record (card

or card image) in the
wevur file.

. Moves the phase name

(columns 6-10) to the
permanent area if the record
contains an option, otherwise,
calls AUTOC.

. Permanent monitor calls

MNTOR (between phase
monitor).

54 Autocoder (Disk) Operating Procedures

1.

L.

Function

. After control returns from

MNTOR, the permanent
monitor calls the phase
named in the option card.

. Contains the disk-error routine

used by the Preprocessor.

Reads in the phase-header
table and selects the entry for
the phase name written in the
permanent monitor area.

. Initializes the permanent

monitor to read in the required

phase giving this information:

a. The terminating group-
mark word-mark

. The starting disk sector

The number of sectors

. The clear-storage address

The read-into-core address

The execute-to-phase

address

g. The split-phase suffix code.

=0 00 o

. If requested, clears storage

from the address specified in
the phase header to 1000.

. If the phase header has a

split-phase suffix, initializes
the permanent monitor to
return to the between-phase
monitor after reading the
first part of the phase.

. Upon return from the

permanent monitor, moves
suffix to the phase-name
request location in the
permanent monitor and
transfers back to step 1 for
the next part of the phase.

Replaces entries in the
phase-header table with new
(modified) entries.

. Adds new entries to the

phase-header table.

. Obtains the corresponding

phase-header table entry when
an UPDAT card is encountered.
Also clears the disk sectors
used by the phase to load
mode blank. For the new
condensed deck, performs

the same procedure as
described for uppAT PATCH

in item 4.

. For each condensed card

following an UPDAT PATCH,
computes the sector(s) to be
patched and the starting
location within the sector(s).
Also, it reads in the sector(s),
performs the patch by
simulating an object-deck
loader, writes the sectors
back on the systeM file, and
proceeds to the next
condensed card.

Calls in DIO0O after the
update operation has been
completed.

Name

Library
Build

Library
Change

Library
Listing

Constant
Storage

ID
INITI

LIBRA

LIBR2

LIBR4

LISTI

AUTOC

DO

O =

Function

. Writes a record that contains

the end-of-library name
(99999).

. Writes the end-of-library

name and its disk address in
the library table.

Reads in the library table.

. Obtains, from the table, the

beginning and ending disk-
sector addresses of the existing
library.

Sets up direct-seek test

flag for LIBR2.

. Recopies the entire existing

library. During this process,
all insertions and deletions
are made. All inserted state-
ments are rebuilt to conform
to the disk Autocoder
library format.

. Writes the routine name and

the beginning disk-sector
address in the library table.

. Writes the routine on the

LIBRARY file,

. Repeats steps 5 and 6 until

all routines have been written.
The new library is written
starting one sector beyond

the end of the old library.

The library area is effectively
a closed loop. When the
upper area is reached, the
remaining routines are written
starting at the lower limit.

. Writes the new library table

in the LiBRARY file.

. Calls in DI00O (linkage) after

the library change operation
has been completed.

. Reads in the library table.
. Prints all of the names in the

library table if the LisTING
opTN card specifies HEADERS.

. Prints the entire library if the

LISTING OPTN card specifies
ALL.

. Prints the specified routines

if routine-name cards follow
the LisTing orTN card. The
starting address of each
specilied routine is obtained
from the library table.

. Punches the entire library into

cards with each routine
preceded by an iNseEr card if
the LisTiNG oPTN card specifies
PUNCII or PUNCI11444.

. Calls in DIO0O after the listing

or punching operation has
been completed.

. Prepares the workl file to use

8K (larger blocks) if more
than 4K storage is available.

. Initializes all areas and

output routines needed during
the macro pass.

. Reads the jos, crL, and

comments cards and writes
them on the workl file.

Name

Main Line

ID

MNLIN

4.

1.
. Writes all source statements,

3.

=13

Function

Analyzes the cTL card. Sets up
permanent switches for the
macro generator (MAGEN).
These indicate the size of the
object machine, the presence
of the modify-address,
advanced-programming or
indexing-and-store-address-
register, and multiply-divide
features.

. Sets up a sumbox for returning

to the program loader during
object-program execution.

. Sets up the macro pass modify-

add procedure.

Reads source statements.

except DTF entries, on the

work]1 file.

Calls SPSCV (conversion

phase) if an ENT statement
is encountered.

. Calls in the DTF phase upon

encountering a DTF entry.

. Places source INCLD

statements in the incLD file
for processing at LTORG,
EX, or END time. (The
cLp file is located on

the work3 file.)

. Processes the cHAIN macro

developing as many
object-program statements
containing the specified
operation code as are stated
in the operand field of

the cHAIN macro.

. Sets up the source macro

instructions for MAGEN
(macro generator).

a. Turns off all temporary
switches and adds 1 to the
0] counter.

b. Turns on the particular
temporary switches for
which there is a parameter.
¢. Relocates the parameter
for use by the macro
generator.

d. Counts the parameters.
e. Writes out source macro
statements as comments.

f. Generates and writes out
LABEL EQU *--1 if the
source macro statement

has a label.

g. Extracts disk address

of library routine from
library table for MAGEN.
h. Calls the macro generator
and transfers control to it.

. Handles MaA instructions

as macros if the Modify
Address feature is not
available on the object
machine.

. For an Ex statement, the

MNLIN checks a special
counter to determine if there
is a closed library routine

in the mvcwp file. If the

55

Name

Conversion

Macro
Generator

1D

SPSCV

MAGEN

Function

counter is zero, it writes out
the statement and procecds
to the next card. If the
counter is not zero, it

calls in MCIMC (macro-
in-macro) and transfers

control to it.

10. For a Lronrc statement in

any form other than

LTORG *, the MNLIN
replaces the LTore mnemonic
with ore and writes it on
wonkl. IFrom this point,

the procedure described in
step 9 is taken. Upon return,
a LTORG * statement is
generated and inserted

in werkl,

11. IFor an EnD statement the

MNLIN follows the same
procedure deseribed in
step 9.

2. Calls AUA/C (first assembler

phasc) after Enn has been
written on work1.

. Reads source statements

written in 1401 SPS or 1440
Basic Autocoder format.

. Converts the statements to

disk Autocoder format.

. Writes the converted

statements on wonk1.

. Calls MNLIN (main linc)

when an ENT AUTOCODER
statement is encountered.

1. Extracts the next sequential
library statement (sce
step 7¢g under MINLIN).

2. 1If this statement is a macro

header, MAGEN assumes
an end-of-macro condition
and calls in MNLIN

(main line).

3. If a Boou skip condition

is in cllect, MAGEN tests

for the oo label character.
1f the required BooL

label character is not in

this statement, the program
returns to item 1; otherwise,
it turns ofl the BooL

skip switch and proceeds.

4. If the statement specifies

ArEND, MAGEN calls
MNLIN (mainline).

5. Scans the entire record for o

and # symbols substituting
parameters and sumboxes in
model statements. If 70T
type symbols are
encountered, the program
inscrts the contents of

the macro counter beside
the symbol (for example,
70J023). The values of
temporary or permanent
switches are substituted in
BOOL statements.

6. If the statement is an INCLD

or a macro-in-macro type,
the program places it

56 Autocoder (Disk) Operating Procedures

Name

Macro-in-
Macro

Include

Initialize

Mnemonice

ID

MCIMC

INCLD

AUA/C

AU3AA
AU3BA
AU3CA
AUSSA

10.

11.

O =

Function
on the INCLD file for

later processing and writes

it as a comment on workl,
MAGEN then returns to

step 1.

. If the statement is not a

MATH or sooL, MAGEN
writes it on workl and
returns to step 1.

. Solves MaTH and BooL

statements.

. Sets any switches specified

to show results of processing
MATH Or BOOL statements.
Places the result developed
for a MATH statement

in the specified sumbox

(if any) and goes to

step 7.

If the statement is a BooL
and has a truc result,
MAGEN returns to step 1.
If the result is false,
MAGEN sets up a Boor

skip if a BooL label character
is specified.

. Reads the INCLD file.
. Handles macros as described

under MNLIN (main line).

. Writes all non-macro

statements (not named in the
library table), except
INCLD, On WORK1,

. Calls in INCLD (include)

after all statements have
been processed.

. Reads the ivoLp file.
. Bypasses all statements except

INCLD statements.

. Write INcLD statements on

workl as comments.

. Writes the library routine

specified by each mNveLp
statement on wonkl, If a
duplicate mNcLD statement is
encountered, its associated
library routine is not extracted
because library routines for
INCLD statements are included
in the object program only
once per program overlay.

. Eliminates the contents of

the file and resets the address
of the file after all the
statements in the INCLD

file have been processed. Calls
MNLIN (main line).

. Sets up 170 areas according

to machine size.

. Initializes 170 routines.

. Reads source statements

(text) from workl.

. Analyzes the ot card.

Prints the cTL card image
and diagnostic messages if
any characters are invalid.

. Looks up mnemonic operation

codes and inserts the
machine-language operation
codes, d-modifiers, control

Name

Conditicner

Diagnostic

Literal

Symbol
Extraction

Label Entry

ID

AU4AA
AU4BA
AU4CA
AU4DA
AU4EA

AU4WA
AU4XA

AUSAA
AUS5JA
AUSKA

AU5SMA
AUSNA

AUTDA
AUTEA
AUTFA
AUTGA

Q.

Function

fields, and operand-type
codes in the object portion.

. Inserts flags to indicate the type

of statement (assembler-
control, comment, instruction).
Inserts a diagnostic flag
symbol in the object portion

if an operation code is

invalid.

. Writes the text on workl.

. Reads the text from workl.
. Extracts operands from the

source portion and inserts tags
in the object portion.

. Interprets indexing and/or

adjustments and inserts tags
in the object portion.

. Extracts symbolic indexing

and develops symbolic
indexing table.

. Inserts a diagnostic flag

in the object portion if any
errors are detected.

. Writes the text on work1.

. Reads text from workl.
. Analyzes operand errors

according to operand-type
codes.

. Checks d-modifiers in the

source portion against a
valid d-modifier list.

. Checks the label field.
. Writes diagnostic messages

and incorrect source
statements on the MESSAGE
file.

. Reads text from workl.
. Extracts literals, checks for

duplication, and creates
literal table.

. Purges literal table and writes,

on work] (literal file), the
processor-declared literal fields
for each program overlay.
Inserts the displacement
integer in the object portion
for each entered literal.

. Writes text on work1.

. Extracts symbols (labels and

arca:defining literals)
addresses and sequence
numbers.

. Builds the cross reference

table on wWORK2.

. Reads text and literal file

from workl.

. Extracts labels from the

source and enters them in

the label table.

. Enters all litcral origin

addresses into the literal-base
table.

. Enters EQu labels into the

label table if previously
defined, or enters symbolic
EQU labels into the rQu table
if not previously defined.
Assigns addresses and

Name

Sort and
Merge

Table
Analyzers

Symbol
Lookup

Pre-output

ID

AUTHA
AUTIA

AUTJA

AUTKA
AUTMA
AU7NA
AUTOA

AUTUA
AUTXA

AUTSA
AUTTA

AUSAA

Label Table AUTXA

Listing

Cross Reference AU9AA

Listing

AU9BA

Ovutput Processor

This section describes the phases that make up the
Output processor.

ID
OP10P

OP20P

Function

Function

allocates areas for instructions,
defined areas, and constants.

After the symbol table has
been built on work2 or the
label table on work3:

a. Arranges symbols or labels
in alphabetical order within
segments of the label on
symbol table.

b. Merges table segments to
alphabetize the entire table.

1. Converts symbolic EQu entries
to actual addresses.

2. Detects and flags error
conditions in the table.

3. Creates reference table for
use by the symbolic lookup.

. Reads text and literal file.

. Looks up symbols in the label .
table and inserts actual
addresses in the object portion.

3. Adds the literal bases found
in the table to the
displacement developed
during the literal phase.

4. Inserts a diagnostic flag
symbol in the object portion
if any symbols are multiply
defined or undefined.

5. Writes text and literal file

on WORKL.

1. Reads text and literal file
from workl.

2. Extracts adjustments and/or
indexing from the source
portion and adjusts the actual
addresses.

3. Conditions the object portion
of text for processing by the
OUTPUT pProcessor.

4. Inserts a diagnostic flag
symbol if any errors are
detected.

5. Writes text on the outpuT
file. workl becomes ouTpuT
if the THRU option is specified
in the AUTOCODER RUN card.

DO =

Writes the label table listing
on the wist file.

Writes the cross reference listing
on the wist file,

1. Sets up I/O areas according to machine size.
2, Initializes I/0 routincs.
3. Opens required files.

Reads the ivpur file and transfers the program
listing to the visT file.

57

ID Function

0OP20Q Wirites the end-of-listing message.

OP30P 1. Transfers the clear-storage and bootstrap rou-
tines for the 1442 to the outrur file.

2. Transfers the 1442 loader to the outrur file.
OP40P 1. Reads the meur file.
0OP40Q 2. Processes the source.
OP40R 3. Transfers the object program in condensed
OP40S loader.
OP40T
OP50P . Reads the veur file.

. Resequences source-program statements.
. Transfers the resequenced statements to the
outpurt file.

O DO

OP60OP Builds 90-character sectors in the coreLoabp file.
OP60Q Builds operating sectors in the coreLoap file.

OPSBOR 1. Reads the inpur file.

OP60S 2. Loads the object portion of the source into the
OP6OT coRreLoAD file.
OP60OU

OP70P 1. Reads the ivpur file.
OP70Q . Processes the source.

OP70R 3. Transfers the self-loading object program to the
OP70S ourpur file.
OP70T

o]

58 Autocoder (Disk) Operating Procedures

ID

OP8OP

OP90OP

Function

Transfers the clear-storage and bootstrap routines

for the 1402 to the outpur file.
Transfers the 1402 loader to the ourpur file.

Reads the output option cards.
Selects the phases to be used.

Execution Processor

This section describes the phases that make up the

Execution processor.
ID Function
EXEXC Sets up 170 areas.

EX4EX
EXSEX
EX2EX
EX6EX

Initializes 1/0 routines. ‘

Checks header record in the ixpur file.
Clears storage.

Initializes disk loader and bootback routines.
Disk loader and bootback for 4K.

Disk loader and bootback for 8K.

Disk loader and bootback for 12K.

Disk loader and bootback for 16K.

This section contains a listing of the sample program
(Figure 35) that is the last part of the Autocoder Sys-
tem Program Deck. This program is designed to calcu-
late the hourly, weekly, and annual salaries associated
with a given monthly salary. The monthly salary starts

at $400 and is increased by $25 until it equals $900.

Appendix lli

CORELOAD ASGN 1311 UNIT 0O,

AUTOCODER RUN THRU EXECUTION

START 012300,

END 012399

ADDRS

00608
00633
00747
00970
00641
00781
01004
00667
00805
01028
00660
00658
00839
01062
00667
00848
01071
00668
00874
01097
00883
01106
00856
01079
00865
01088
00884
01107
01411

01404

00500
01447
01449
01381
01390
01363
01395
00553
01419
01427
01435
01443
01445
01375
01369

CROSS REFERENCE LISTING

LABEL TAG SEQUENCE NUMBERS OF INSTRUCTIONS WHERE SYMBOL APPEARS

00J001
n0Koo01
noK002
QK003
noLoo01
r0L00O2
aQLo003
BOMOOL
oOM002
o0M003
aONOOL
noPOol
ngP002
nOPOO3
B0Q001
n0Q002
a0Qo03
aQRrRCOO1
aQgrRO02
n0ROO3
114002
a1J003
olK002
rlKoo03
alLo02
alL003
a1NO02
alN003
ACCUM

AREA

BEG
FIFTHW
FORTY
HOUR
MASK
MONTH
MTH
START
TOT1
T0T2
7073
T0T4
THLV
WEEK
YEAR

0029
0034
0058
0098
0036
0064
0104
0041
0069
0109
0040
0039
0074
oll4
0042
0075
0115
0043
0079
0119
0081
0121
0076
0116
0077
0117
0082
0122
0183
o128
0182
0087
0149
0004
0189
0190
0179
0180
0176
o181
0018
0184
0185
0186
0187
0188
0178
o177

0033
0037
0063
0103
0028
0068
0108
0030
0065
0105
0027
0034
0058
0098
0024
0051
0091
0029
0058
0098
0059
0099
0057
0097
0053
0093
0069
0109
0044

0018
[o[e]:1:]
0150
0191
0051
0091
0014
0018
001l
0019
0134
0022
0049
0089
0128
0025
0013
0012

0036

0072
0112
0030

0029

0069
109

0052
0092

0060
0100
0083
0123
0054
0094

0046
0019

0125
0151

0045
0022

0145
0149
0153
0157

0034

0033

0070
0110

0059
0099

0084
0124
0055
0095

0049
0020

0126
0152

0085
0026

0044

0036

0070
o110

0060
0100

0056
0096
0054
0021

0127
0153

0125
0132

0062
0102

0062
0102
0084
0045

0129
0154

0144

0133

0064
0104

0064
0104
0086
0046

0144
0155

0148

0066
0106

0066
c106
0089
0047

0145
0156

0152

0071
0111

0094
0048

0146
0157

0156

0071
0111

0124

0085
0147
0158

0126

0086
0148
0159

Figure 35. Sample Program (Part 1 of 6)

59

SEQ

JoolL
3002
J003
3004
3005
2006
Joov
Jouos
3009
3010
Joll
JoL2
y013
JOl4
Juls
J0lL6
J0L7
3018
Jol9
Joz20
3021
3022
3023
2024
1025
J026
027
0028
2029
3030
0031
0032
0033
2034
3035
JO36
2037
2038
0039
0040
JO41
2042
2043
J044
0045
0046
2047
J048
J049
2050
J051
0052
0053
0054
J055

SPLOL

PGLIN,

0001
0002
0005
0006
0Qa7
0008
0009
0otro
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
Q025

R L K K K 2 IR KR IR R R R IR R R X

0026
0027
0028
0029
0030
0031

* % ¥ 9

LABEL

SPLOL

BEG

START

104001

uOKo01

oQLoo1

aoPQo1l
aQN00L
o0Mo01
a0gool
oorR001

OPCD OPERAND

J08B SALARY TABLE COMPUTATIONS

CTL

JRG 500

cS 332

(o3

MLC ASALARY TABLEQ,241

L]

cs 299

W

W

MLC MUNTH,216

MLC YEAR,232

MLC WEEK 247

MLC HOUR,263

W

Ccs 299

L]

MLCWA MASK,AREA

MCE MTHyAREA

SW AREA-8

MLC AREAs210

A MTH,TOT1
MLTIPYTHLY 3240 4MTH 52, ACCUM,7,2

S u0Qool

MLCHA Tulv

MLCWA MTH

s &0,00NOO1

B agLoolL

BW 2QR001, A0NOO1

MLC agMoul-1,80M001

MLNS

MLCWA

BCE 10J001,120N0O0L .0

A agPO01,u0MO0L~-261

S

BCE 004001, 00N00L, &

B u0Koo1l

OCw 21

DCW #5

oCw #2

DCH #00007

EQU *

£QU *&1

ZA 00MO0L s ACCUM

MLOWA MASK,AREA

MCE ACCUMrAREA

Su ARLCA-8

MLC AREA, 232

A ACCUM,TOT2
DIVIDFIFTiny 2909 ACCUMs T92,ACCUM, T2

ZA FIFTW,80Q002

A 202,130Q002

) niloo2

ZA ACCUM,T11002-00001

ZA olLonz

SALARY TABLE COMPUTATIONS

Figure 35. Sample Program (Part 2 of 6)

60 Autocoder (Disk) Operating Procedures

SFX CT

I I i R R e e e Rl e N

Ll - N RN I SO PR N Y

N N e R N E N

LOGCN

500
500
504
505
512
513
517
518
519
526
533
540
547
548
552
553
560
567
571
578

585
589
593
597
604
608
616
623
624
625
633
640
641
649
653
658
660
667
667
668
668
675
682
689
693
700

707
714
721
725
732

PAGE 1

INSTRCTN A-ADD B-—ADD

/332

/
MU61241
2

/299

2

2
MT63216
MT69232
MT75247
MT81263
2

/1299

2
LT90U04
ET95U04
»T96
MUO4216
ATI5U19
*EMACRU**
$667
LU4S
LT95
SU62660
B641
V6686601
M666667
D

L
B6086600
A658666
S
B86086608&
8633

6667U11
LT90U04
EULLUO4
2 T96
MU04232
AULLU27
*¥MACRO**
&U47848
AUb3848
$865
£UL1864
&£865

332
1461

299

1363
1369
1375
1381

299

1390
1395
1396
1404
1395

667
1445
1395
1462

641

668

666

608
658

608
633

667
1390
1411
1396
1404
1411

1447
1463
865
1411
865

241

216
232
247
263

1404
1404

216
1419

660
6560
667
660
666

660

1411
1404
1404

232
1427

848
B48

864

«FLAGS

L I R I L R O T I R S T S S S S S T S S S S S TS S S O

?

PGLIN LABEL

*

*

* 10K902
*

*

*

*

*

* o0L002
*

®

*

*

* agMoo 2
*

*

*

*

* z0oP002
* 20Q002
* olKoo2
* ali002
*

* 20R002
*

* 114002
* alN002
*

*

0032

0033

0034

0035

0036

0037

*

*

*

*

*

*x

*

* u0oKoo3
&

*

*

*

*

* a0L003
*

*

*

*

* QMoo 3
*

SALARY TABLE COMPUTATIONS

GPCD UPERAND SFX CT
A @0 ulL 002 7
3 alkoo2 4
MLCWA BOP002,B0R002~-1 7
A 00002, 01J002-1 7
A ulJ002, B0Q002 7
MLCWA 1
C n0QouZ,ulivn2 7
8H upK002 5
c n0G002,81L002 7
BL HOMO02 5
S 10QUU2,B81L002 7
A 1
B a0Lo02 %
BCE HINOD2, 00POV2,1 8
MLCWA 10P002-1,20P002 7
LA £10Q002-1,80Q002 1
8 noLo02 4
DCW #00008

DCu dlad 1

DCW #00009
DCw #00008
oCH #00009
DCW #00008

oc a0a 1
DCW #00008

0C 303 1
EQU *E1

A @58 y111K002 7
ZA olK002—-1y ACCUM 7
MLCWA MASK,AREA 7
MCE ACCUM,AREA 7
SW AREA-8 4
MLC AREA, 247 T
A ACCUM,TOT3 1

DIVIDFORTY 2,0y ACCUM» T+ 20 ACCUM, 7,2

ZA FORTY yH0Q003 1
A a0a,30Q003 7
S alloo3 4
ZA ACCUM, 1L 003-00001 7
ZA alL003 4
A Q0@ 11L0O0O3 7
S niKo03 4
MLCWA 1107003, 20R003-1 7
LA 10QUO3,01J003-1 7
ZA alJdon3,z20Q003 7
MLCwWA 1
C 00Q003,01L003 7
BH a0K003 5
c 10Q003,a1L003 7
BL ugMo03 5
S 10Q003,u1L003 7
A 1
B z0L003 4
BCE aLlNU03,10P003, 1 8
MLCWA o0OP003-1,30P003 7

Figure 35. Sample Program (Part 3 of 6)

LOCN

736
743
747
754
761
768
7649

INSTRCTN A-ADD B-ADD

AU63865
5856
L839873
6848882
£383648
L
848865
B747U

€ 848865
B805T
5848865
A

B781
BBB48391
L838839
6847848
B781

AU64856
&855U11
LT90U04
EULLU04
1 T96
MU04 24T
AUL1U35
*kMACRO**
EU49#TL
AU63¥T1
S+¢88
&UL11#¥87
£+88
AU63+88
S+79
L$62%+96
&¥71/05
6706471

L
C+71+48
B970U
C#71488
B¥28T
S#71+#88
A

B8¥04
B/0T#621
L¥b61¥62

1463
856
839
848
883

848
747
848
805
848

781
884
838
847
781

1464

855
1390
1411
1396
1404
1411

1449
1463
1088
1411
1088
1463
1079
1062
1071
1106

1071

970
1071
1028
1071

1004
1107
1061

865
873
882
848
865
865
865
839

839
848

61

Figure 35. Sample Program (Part 4 of 6)

62 Autocoder (Disk) Operating Procedures

3

INSTRCTN A-ADD B-ADD

SPLOL SALARY TABLE COMPUTATIONS PAGE
SEW PGLIN LABEL OPCD OPERAND SFX CT LOCN
0lil = A 10QUU3-1,00Q003 7 1043 &+#70#71
0112 = 8 uoL 003 4 1050 B+#04
0113 =* DCW #00008 1061
0114 * a0P003 DCW ala 1 1062
0115 * n0Q003 DCw #00009 1071
0116 =* olK003 DCW #00008 1079
0117 * alL003 DCW #00009 1088
0118 = DCW #00008 1096
0119 = QOrR003 DC a0a 1 1097
0120 * DCHW #00008 1105
0121 * ulJ003 DC AV 1 1106
0122 * alN003 EQU *&1 1107
0123 * A @5d+01K003 7 1107 AUb4*79
0124 * ZA. G1K003-1,ACCUM 7 1114 NU11
0125 0038 MLCWA MASK,AREA 7 1121 LT90UO4
0126 0039 MCE ACCUM,AREA 7 1128 EULLU04
0127 0040 S AREA-8 4 1135 ,T96
0128 0041 A ACCUM,TOT4 7 1139 AULLU43
0129 0042 MLC AREA,262 4 Ll46 MUQ4262
0130 0043 L] 1 1153 2
0131 0044 Ccs 299 4 1154 /299
0132 0045 A D252y MTH-2 7 1158 AU656T93
0133 0046 c MTH=2+a4901a i 1165 €T93U69
U134 0047 B8H START 5 1172 B553y
0135 0048 n L 177 2
0136 0049 W L 1178 2
0137 0050 MLC SFIR3T LINE IS COMPUTED TOTALS@,229 7 1179 MyU98229
0138 0051 W 1 186 2
0139 0052 [299 4 L1871 /299
0140 0053 MLC WSECUND LINE IS CORRECT TOTALSA,229 7 1191 Mv27229
0141 0054 W 1 1198 2
Ul42 0055 cs 299 4 1199 /299
0143 0056 W 1 1203 2
0l44 0057 MLCWA MASK,AREA 7 1204 LT90UD4
0145 0058 MCE TOT1,AREA 7 1211 EUL9U04
0l46 0059 SW AREA-8 4 1218 796
0147 0060 MLC AREA,216 7 1222 MUo4216
Q148 0061 MLCWA MASK,AREA 7 1229 . LT90U04
0149 0062 MCE ToT 2, AREA 7 1236 EU27TU04
0150 0063 SH AREA-8 4 1243 47196
0151 0064 MLC AREA,232 7 1247 MU04232
0152 0065 MLCWA MASK,AREA 7 1254 LT90UD4
0153 1066 MCE TOT3,AREA 7 1261 EU35U04
0154 0067 SH AREA-8 4 1268 +T96
0155 0068 MLC AREA, 247 7 1272 MU04247
0156 0069 MLCWA MASK,AREA 7 1279 LT90UO4
0157 0070 MCE TOT4,AREA 7 1286 EU43U04
0158 0071 SH AREA-8 4 1293 ,T196
0159 0072 MLC AREA,262 7 1297 MU04262
0160 0073 " L 1304 2
0lé6l 0074 LS 299 4 1305 /299
0162 00175 MLC @13650.003,216 7 1309 MV35216
ule3 0076 MLC #163300.00a,232 7 1316 MV44232
0le4 0077 MLC ¥3150.002,247 7 1323 MvY51247
0165 0078 MLC @78.752,2062 7 1330 Mv56262

1070
1004

1464
1078
1390
1411
1396
1411
1404

299
1466
1393

553

1498

299
1527

299

1390
1419
1396
1404
1390
1427
1396
1404
1390
1435
13956
1404
1390
1443
1396
1404

299
1535
1544
1551
1556

1071

1079
1411
1404
1404

1443
262

1393
1469

229

229

L404
L404

216
1404
1404

232
1404
1404

247
1404
1404

262

216
232
247
262

——"‘——-_—————_—-N——_————-_—___~——"__""""’——‘\\‘_‘_‘“'_‘__—__‘“‘__________,,’————-__————’—'—-~__~___ﬁ S

«FLAGS

L I T T T T S R T T T TP

T —— —— T —
SPLOL SALARY TABLE COMPUTATIONS PAGE 4
SEQ PGLIN LABEL OPLD OPERAND SFX CT LOCN INSTRCTN A-ADD B-ADD .FLAGS
0166 0079 W 1 1337 2 -
0167 0080 cs 299 4 1338 /299 299 -
0168 0031 W L 1342 2 .
0169 0082 W 1 1343 2 .
0170 0083 MLC JEND OF TABLE®,241 7 1344 MV68241 1568 241 .
0171 0084 W 1 1351 2 -
0172 0035 SyYscL FEMACRO** -
0173 * *% RETURN CONTROL TO SYSTEM ®%* .
0174 * B 3928 4 1352 8128 3928 .
0L75 * NoP 1 1356 N -
0L76 0086 MONTH DCHW AMUNTHL Ya 7 1363 .
0177 0087 VYEAR AYEARLY 2 © 1369 .
0178 0088 WEEK AWEEKLYQ 6 1375 -
0179 0089 HOUR QAHOURLY a 6 1381 -
0180 0090 MASK @ 0. @ 9 1390 .
G181 0091 MTH 400002 5 1395 .
0182 0092 AREA #9 1404 .
0133 0093 ACCUM #7 1411 .
0184 0094 TOTL 00000000 8 1419 .
0185 0095 TQT2 00000000 8 1427 -
0186 0096 TOT3 00000000 8 1435 .
0187 0097 TOT4 00000000 8 1443 -
0188 0098 THLV DCW al2a 2 1445 .
0189 0099 FIFTW DCW as52a 2 1447 -
0190 0100 FORTY DCuW 240a 2 1449 -
0191 0101 END BEG 500 500 .
0192 LTRL QSALARY TABLEa 12 1461 -
0193 LTRL &O 1 1462 -
0194 LTRL @04 1 1463 .
0195 LTRL a53 i 1464 .
0196 LTRL @253 2 1466 -
o197 LTRL a901la 3 1469 -
0198 LTRL QFIRST LINE IS COMPUTED TOTALS? 29 1498 -
0199 LTRL 3SECOND LINE IS CORRECT TOTALSa 29 1527 .
0200 LTRL @13650.00a 8 1535 -
0201 LTRL a163400.00a 9 1544 .
0202 LTRL a3150.00a 7 1551 .
0203 LTRL a78.752 5 1556 -
0204 LTRL QEND OF TABLEa 12 1568 -
END OF LISTING NO SEQUENCE ERRORS
CORE LOAD HEADER- SALARY TABLE COMPUTATIONS s+ ID-5PLO1
CORE LOAD QUTPUT COMPLETE ON 1311 UNIT 0, START 012300, END 012318

/

Figure 35. Sample Program (Part 5 of 6)

SALARY TABLE

MONTHLY YEARLY WEEKLY HOURLY
400.00 4800.00 92.31 2.31
425.00 5100.00 98.08 2.45
450400 5400.00 103.85 2.60
475.00 5700.00 109.62 2.74
500. 00 65000,00 115.38 2.88
525.00 6300.00 121.15 3.03
550,00 6600.00 126.92 3.17
575.00 6900.00 132.69 3.32
600,00 7200.00 138.46 3.46
625.00 7500. 00 144.23 3.61
650.00 7800.00 150.00 3.75
675.00 8100.00 155.77 3.89
700.00 8400.00 161.54 4404
725.00 8700.00 167.31 4.18
750.00 9000400 173.08 4433
775.00 9300.00C 178.85 447
800.00 9600.00 184.62 4.62
825.00 9900.00 190.38 4.76
850.00 10200.00 196.15 4.30
B875.00 10500.00 201.92 5.05
900.00 10800.00 207.69 5.19

FIRST LINE IS COMPUTED TOTALS
SECOND LINE IS CORRECT TOTALS

13650.00 163800.00 3150.00 78.75
13650.00 163800.00 3150.00 78.75

END OF TABLE
HALT

Figure 35. Sample Program (Part 6 of 6)

63

Index

ASGN Cards ..cceevevenveernvenneeniinininnnienn, 7,8, 22, 24, 25, 27, 31, 50
Assembly, Conventional ..., 16
Assumed Assignments 6,8, 16,25,50
Autocoder Assembler Programcocovenieeveeniinionnn 5,6,9,48
Autocoder LangUage ...cco.coeeeiininiienieiniimennse i, 6
Autocoder LiDrary ..o 5,27, 28
AUtOCOAEr MACTOS vvieviereeererreeereeienresnresesessasisnesssesssssseesses 28, 45
Autocoder Processor 6,7,9,16,53
AUTOCODER RUN .eieiiieeerirrerersisrasssssesesseesinsmnsssnssesnonsnsissessssssssnee 20
AUTOCODER RUN THRU EXECUTION evecresververeeresienersissnensensenne 18
AUTOCODER RUN THRU OUTPUT .eoevrerrerveriseristiasessessesseresnensenss 17
Autocoder System
BUilding Qn ..ooeoeeceeeeieenncnniiini e 45
Components Ofcocovereriveriniineninnr 6
COPYINE AN .evrvriiiiiniiiiiiriseseienieeirse e 49
Deck DeSCriPtion ..ucvvceeeerevererererenimiininenesinseneeeessenes 43
Definition of ..coeeveeeivieiieiiiennne 5,6
FeatUreS Of .ooivieeriiiiiereereere et erresseereesti st ae st sans e sn e snee s 5
Updating an .. 2, 49
Autocoder Text , 13, 17
Autocoder Updateveriveieninenmiiriiiiessssneeneens 45, 48
Batched Filescoccvevienvecerienneinenniniiniciennees 5,7,27
Bootback 5,10, 41
Bootstrap €Cardcoccverreneniieiniiee s 14, 15
Building an Autocoder Systemccocorevrmenirieieniiniiiniis 43
Card BoOt .cccoeeeevviieecenienreneeeresssere i 5, 6, 16, 22, 32, 45
Changing File Assignmentscccounvree . 5,7,8,22,27
Clear Cards ...ovevevveerverereesreeirreeseresreeseeessreesneessreesnenns 14, 15, 32
COMPAT OPTN Cardcccocevivvreeninineiiiinonennnsissonisssnene 31, 52
Condensed-Loader Format .. . 14,17, 34,41, 42
Control Cards cvveevvivveneereeriereerensessesesssreseneseressesesessaesees 7,16, 50
contrOL File . 7,22, 23,24, 32
Controlled Execution 5,10,18,19, 40
Conventional AsSemblYc.ccoceverrcriniiiniiiieiniei e 16
Copying an Autocoder SYStemcoevererevenncniininianiiinens 49
CORELOAD ASGN Cardcccevnnenee . 18, 21, 22, 25, 50
CORELOAD File ...cooieerinieriniiniiniiniienieeninnsnine 5,7, 22, 24, 25
Coreload Format 10,15, 17, 40, 41
CORELOAD OPTN Cardcoceeevievivieeninienvecenineiirmnnieineenn 18, 21, 52
Cross-Reference Listingcccocceevevneoroniinneeinninisnenninenn. 11
crn Card Diagnostics 10, 17
CTL Card Format ...ccceecevverivemeeierneercinienneioinecsesnsinssneensenes 10
Definition of Key Termscccccecervecrrenirinmirenninrenenininnnnnnesens 5
DELET Cardccoovevverneen. 31, 52
Delayed Execution 19,40
Diagnostic Flag Symbols ... 9, 10
Diagnostics, CTL Cardccoeviereiniivirinins .. 10,17
Diagnostics, Source Statementcceeeveenee .. 9,10,17
Disk LoAder ...coeovveererireerercrineeseniesneiieiee s ee 15, 40
DocUMENLALION .ovvrerirvrreeeiriieiersrereemiresesiressssiseiesorsseessnieseessnees 10
END CATd .ovovveviiiirreeeiiieeiesseessieessesiressossinssnssnsinessssnnessannens 30, 52
EX Statement
Execution
Controlled
Delayed ..ccveiemerireeieirenee i 19, 40
Independent 5, 32, 41
Multi-Programccceveceenmnnnverinenniesiesinnsssssinennsnsre 40
Execution Processor 7,10,15, 16, 58
EXECUTION RUN .vvviiiiuveeeisivresversersesesassessssssrsssssassisssensass 19, 40, 41
External FileS .ooovvvimiiiiriiiiieeiiieeerieeieeseseesnesiessnsesnssnees 7,24
Files, Batchedcccoeeeiivevenrnencrononiiciieeeiee e 5,7,27
Files, Logical (See Logical Files)
Flag Symbols, Diagnosticccevreviimieniniereioninninenecnnnenas 9, 10

64 Autocoder (Disk) Operating Procedures

Group-Mark Word-Markc.ccccevevmienniinininninennnneniens 15
HALT Card .ccoovvveeeviireereniesneneseenescennssnnssesnns 9, 16, 22, 32, 52
Halts and MeEsSaZES .oveervivverniiinniiiiiiiieieie s 34

Header Record (coreLoap File) 15, 25,40
Independent Exccution 5,32,41
INIT Card .o, ... 8,22,27
INITIALIZE OPTN Card ...occoeovivviirienicnecn e 30, 52
INPUT File .oooocveiinericne 7, 24, 32
mnsER Card 31,52
Internal Files 7,23
JOB Card oo 15, 41
Jobs

Definition of .ooeveovieoiieeiieieer st 5

Library ...c..c.c..

Performing ..

Preparing

Processor ...

Stacked

UPAALC covervriirirereeieieereeere ettt seaase s
Label Table oot
LDRCL MACTO cooitiiviiiirerienieesnessesesneniiessienesiessnesssesssnessnsees 30, 40
LADIATIAN ceveiieeiiieee et ccreeer e eesee e re b e s ebnesr e seeesnbeeananes 7,9, 55
LIBRARY ASGN Cardcccovveveneennns 25, 29, 50
Library, Autocoder .. 5,27,28
Library Build ...ccocccoivieieciiniicniniiiiiiiee s 29
Library Capacity .. . 29
Library Changecceveeeeieenmeeensinsiesessesisnersssssssssessssseseses 30
LIBRARY File .o 7,24, 27,28
Library Jobs cvecrrivriiinni e 16, 28, 32
Library Listingccovevvimiiiiniiinis s 30
Library, Object-Program e 5,27
LIBRARY OPTN Cardcccccviieiiinvecriinniinninnnneienene 31, 52
Library Routinesccccceeivimneenninninniionnninicn: 7,9,28
Library Table cocovceeevininininiieeeiseseisesnnenee .. 7,9,28
LIST ASGN CATd ceevvviivrireeieirieeiirneesssereeessisrssssssnssasnsssssseess 25, 50
LIST FIle oottt 7,24
L1sT OPTN Card ..cocovvvieene 17,21, 52
Listing, Cross-Referenceocooemiieimrinininnnnincnsinine 11
Listing, LiDIary ..o 30
LISTING OPTN Card ...oocovvoveeiierinerennnninenineneeenresnissssenees 30, 52
Listing, Program 10,11, 17
Load-and-Go .ooveieriicieenireenreeniresiecser i 18, 40
L0Ad CATAS evierieieiriiereereerreereeerereener e sare s en s et seb et sene 14
Loader, Condensed ... 13, 14, 41
Loading Object PIOZIAINS ..cocievierirviriermiesssssesinisssisisinissenans 32
Logical Files

Assumed ASSigNmMEnts ... B, 8, 16, 25, 50

BatChed .ooooviieereeceeceeetieerreie sttt sens e 5,7,27

Changing ‘Assignmentsccceceeenee 5,7,8,22,24

CONSIAETALIONS evvrrveeerriiesreerreeeesreeseesiesresirsisensesnesseosansssnsnes 24

Contents 7,23, 24

DEANIHON O weeeveriieieieiierrreraerressre s esresss s e aasee st sans

External 7,24

Function ofc....... ... 5,6

TNEETNAL coeeieeeieiieteeeiecr e eee et scess st e e 7,23

OPCIAON 1ereeveniere it 7,23

RESIACIICE 1vveereeriiviereeerreiiereensesresscssaeesmrostsssseaessnesnesissonssasan 7
Machine Operatorc.ccoeeriiiiniininisineeneenine 2,7,23
Machine ReqUITCINENSvovecvirecinieinieninnisesineescsc s 6
Macro Generator 7,9, 23, 56
Marking Programcccocecociomvniniinieemeniesnesssssnssssssens 43
MESSAGE FilE oveererriiiiiiirieseeeicesnresseeesnes s esressesassnaee s 7,23, 24
MESSAZES vevevreerrerinererivesrinnnns .. 15,17, 34
Multi-Program EXecutionc.ccccoeeiiiininirennsienoininn, 40

90-Character Sectors............................. .. 15, 25
NotE Card. 8, 22, 32, 52
Object Program
Card Formats. 10
Condensed-Loader Format. 14, 17, 41, 42
Coreload Format.. 10, 15, 17
Deck 13, 14
Development 6, 9, 10
Exccution 5, 6, 10, 18, 19, 21, 40
Library 5, 27
Loading 32
Read-In Area 13, 41
Revising the 49,
Self-Loading Format. 14, 15, 17, 42
Using the 40
Object Time [P, 5
100-Character Listing 13, 26
120-Character Listing 13
Operating Procedures 16
Operating Sectors. 15
Operation 6
Operation Files. 7,23
Option Control. 9, 54
oureur File 7,24, 27
Output Options. 17
Output OPTN Cards. 16, 21, 52
Output Processor. 6,7, 15, 16, 57
OUTPUT RUN oot
OUTPUT RUN THRU EXECUTION 21
Partial Processing. 20
pause Card. 8, 22, 32, 52
Preprocessor 9, 45, 53
Phase Descriptions. 53
PRINTER 2 16, 26
PRINTER 0 e 26, 51
Processing Operations, Results of 10, 17
Processor, Autocoder. 6,7,9,16, 53
Processor, Execution. 7, 10, 15, 16, 58
Processor Joebs. 16 32
Processor, Output. 6,7,9, 15, 16, 57
Processor Runs......... 6, 32
Program, Autocoder Assembler. 5,6,9, 48
Program Listing.......... 10, 11, 17
Program, Object (See Object Program)
Program, Source. 5,6,9,15, 17
Program Specifications. 5
Program, System Control. 5, 6, 47
PUNCH L. 16, 26

PUNCH 70 ..ot 26, 51
PUNCHOPTN Card 18, 21, 52
READER L........ 16, 26
READER TU.ottt 26, 51
Read-In Area 13, 41
Related Information. 2
RESEQ oPTN Card. 18, 21, 52
Resequenced Source Deck 10, 15, 18
Resequencing the Autocoder System Deck.......... 43
Residence File 7
Results of Processing Operations. 10, 17
Routine Name Cards. 30, 52
RUN Card. 7,52
Sample Program. 45, 48, 59
Self-Loading Format. 14, 15, 17, 42
Source Deck, Composition of. 18
Source Deck, Resequenced.............. 10, 15, 17
Source Program 5, 6,9, 15, 17
Source Statement Diagnostics. 9, 10, 17
Stack

Definition of 6

Preparation of 32

Running a 32
Stacked Jobs. 5,16, 22, 27
Stacking Object Programs. 10
syscL. Macro. 10, 29, 41
SYSTEM AsGN Card 16, 25, 27 32, 50
System, Autocoder (See Autocoder System)
system File 0 7, 22, 25
System Control Card Build........ 45, 47
System Control Program 5, 6, 47
Text, Autocoder. 5,9, 13, 17
uvepat Card. 8, 50
Update 9, 54
Update Jobs 16, 31
Updating an Autocoder System............ 6, 8, 32, 49
User-Assignments (Logical Files). 16
Using and Maintaining the Object Program. 40
Utility Program 45
workl File 7,23, 24
work3 File 7,23, 24
Write File-Protected Addresses. 45, 46
XFR Statement 14, 25

65

READER'S COMMENT FORM

Autocoder (on Disk) Specifications and Operating Procedures IBM 1401, 1440, 1460
Form C24-3259-3

® Your comments, accompanied by answers to the following questions, help us produce better
publications for your use. If your answer to a question is “No” or requires qualification,
please explain in the space provided below. All comments will be handled on a non-confidential

basis.
No

w

O]

® Does this publication meet your needs?
@ Did you find the material:
Easy to read and understand?
Organized for convenient use?
Complete?
Well illustrated?
Written for your technical level?

OOoogo Oy
Oooood

® What is your occupation?
® How do you use this publication?
As an introduction to the subject? O As an instructor in a class? []
For advanced knowledge of the subject? O As a student in a class?]
For information about operating procedures? [] As a reference manual?)

Other
@ Please give specific page and line references with your comments when appropriate.
If you wish a reply, be sure to include your name and address.

COMMENTS:

® Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

C24=3259=3

FIRST CLASS
PERMIT NO. 387
ROCHESTER, MINN.

BUSINESS REPLY MAIL
NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY . . .

IBM Corporation

Systems Development Division
Development Laboratory
Rochester, Minnesota 55901

Attention: Programming Publications, Dept. 425

B

International Business Machines Corporation
Data Processing Division
112 East Post Road, White -Plains, N.Y. 10601

09%T ‘10%T ‘O T W

A,

'V 'S Nl Ul pajulid

€-652E-$2D

C24=3259-3

BN

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y. 10601

‘10¥T ‘OF¥T WAI

VSN Ul powud 09%T

€-652€-%20

	01
	02
	03
	04
	05
	06
	07
	08
	08A
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	replyA
	replyB
	xBack

